
Agilent X-Series
Signal Analyzer

This manual provides documentation for the
following X-Series Analyzers:

PXA Signal Analyzer N9030A
MXA Signal Analyzer N9020A
EXA Signal Analyzer N9010A
CXA Signal Analyzer N9000A
X-Series Programmer’s
Guide

Notices
© Agilent Technologies, Inc. 2008, 2010

No part of this manual may be reproduced
in any form or by any means (including
electronic storage and retrieval or transla-
tion into a foreign language) without prior
agreement and written consent from Agi-
lent Technologies, Inc. as governed by
United States and international copyright
laws.

Manual Part Number
N9020-90112
Supersedes:October 2009

Print Date
March 2010

Printed in USA

Agilent Technologies, Inc.
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty
The material contained in this doc-
ument is provided “as is,” and is
subject to being changed, without
notice, in future editions. Further,
to the maximum extent permitted
by applicable law, Agilent disclaims
all warranties, either express or
implied, with regard to this manual
and any information contained
herein, including but not limited to
the implied warranties of mer-
chantability and fitness for a par-
ticular purpose. Agilent shall not
be liable for errors or for incidental
or consequential damages in con-
nection with the furnishing, use, or
performance of this document or of
any information contained herein.
Should Agilent and the user have a
separate written agreement with
warranty terms covering the mate-
rial in this document that conflict
with these terms, the warranty
terms in the separate agreement
shall control.

Technology Licenses
The hardware and/or software described
in this document are furnished under a
license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights Legend
If software is for use in the performance
of a U.S. Government prime contract or
subcontract, Software is delivered and
licensed as “Commercial computer soft-

ware” as defined in DFAR 252.227-7014
(June 1995), or as a “commercial item” as
defined in FAR 2.101(a) or as “Restricted
computer software” as defined in FAR
52.227-19 (June 1987) or any equivalent
agency regulation or contract clause. Use,
duplication or disclosure of Software is
subject to Agilent Technologies’ standard
commercial license terms, and non-DOD
Departments and Agencies of the U.S.
Government will receive no greater than
Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Gov-
ernment users will receive no greater than
Limited Rights as defined in FAR 52.227-
14 (June 1987) or DFAR 252.227-7015
(b)(2) (November 1995), as applicable in
any technical data.

Safety Notices

CAUTION:

A CAUTION notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in damage to the product or loss of
important data. Do not proceed
beyond a CAUTION notice until
the indicated conditions are fully
understood and met.

WARNING:

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice,
or the like that, if not correctly
performed or adhered to, could
result in personal injury or
death. Do not proceed beyond a
WARNING notice until the indi-
cated conditions are fully
understood and met.

Trademark
Acknowledgements

Microsoft® is a U.S. registered
trademark of Microsoft Corporation.

Windows® and MS Windows® are
U.S. registered trademarks of
Microsoft Corporation.

Adobe Reader® is a U.S. registered
trademark of Adobe System
Incorporated.

Java™ is a U.S. trademark of Sun
Microsystems, Inc.

MATLAB® is a U.S. registered
trademark of Math Works, Inc.

Norton Ghost™ is a U.S. trademark
of Symantec Corporation.

Warranty
This Agilent technologies instrument product is warranted against defects in material and workmanship for
a period of one year from the date of shipment. During the warranty period, Agilent Technologies will, at
its option, either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent
Technologies. Buyer shall prepay shipping charges to Agilent Technologies and Agilent Technologies shall
pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties,
and taxes for products returned to Agilent Technologies from another country.

Where to Find the Latest Information
Documentation is updated periodically. For the latest information about this analyzer, including firmware
upgrades, application information, and product information, see the following URLs:

http://www.agilent.com/find/pxa

http://www.agilent.com/find/mxa

http://www.agilent.com/find/exa

thtp://www.agilent.com/find/cxa

To receive the latest updates by email, subscribe to Agilent Email Updates:

http://www.agilent.com/find/emailupdates

Information on preventing analyzer damage can be found at:

http://www.agilent.com/find/tips

Is your product software up-to-date?
Periodically, Agilent releases software updates to fix known defects and incorporate product
enhancements. To search for software updates for your product, go to the Agilent Technical Support
website at

http://www.agilent.com/find/techsupport.

http://www.agilent.com/find/pxa
http://www.agilent.com/find/mxa
http://www.agilent.com/find/exa
http://www.agilent.com/find/exa
http://www.agilent.com/find/cxa
http://www.agilent.com/find/emailupdates
http://www.agilent.com/find/tips
http://www.agilent.com/find/tips
http://www.agilent.com/find/techsupport.
http://www.agilent.com/find/techsupport.

Contents
1. Introduction to Programming X-Series Applications
What Programming Information is Available? . 8
Using Embedded Help for Programming . 9

Using the Help System on Your PC . 9
Help System Features Especially Useful for Programmers . 9

Communicating SCPI Using Telnet . 12
Overview of the GPIB . 15

GPIB Command Statements . 15
SCPI Measurement Commands . 16

Measurement Group of Commands . 16
Common Measurement Commands . 20

STATus Subsystem (No equivalent front-panel keys) . 32
Detailed Description . 34
STATus Subsystem Command Descriptions . 44

2. Programming Fundamentals
SCPI Language Basics . 76

Command Keywords and Syntax . 76
Creating Valid Commands . 77
Special Characters in Commands . 78
Parameters in Commands . 78
Putting Multiple Commands on the Same Line . 81

Improving Measurement Speed . 83
Turn off the display updates . 83
Use binary data format instead of ASCII . 83
Minimize the number of GPIB transactions . 84
Consider using USB or LAN instead of GPIB . 84
Minimize DUT/instrument setup changes. 85
Avoid unnecessary use of *RST . 85
Avoid automatic attenuator setting . 85
Avoid using RFBurst trigger for single burst signals . 85
N9071A: Optimize your GSM output RF spectrum switching measurement . 86
Making power measurements on multiple bursts or slots? Use CALCulate:DATA<n>:COMPress? . . . 86
For More Information . 88

Programming in C Using the VTL . 89
Typical Example Program Contents . 89
Linking to VTL Libraries . 90
Compiling and Linking a VTL Program . 90
Example Program . 92
Including the VISA Declarations File . 92
Opening a Session . 93
Device Sessions. 93
Addressing a Session. 95
Closing a Session . 96

For More Information . 97

3. Programming Examples
X-Series Spectrum Analyzer Mode Programing Examples . 100
 5

Contents
89601X VXA Signal Analyzer Programming Examples. 103
6

1 Introduction to Programming X-Series
Applications
This chapter provides overall information regarding programming the Agilent X-Series Signal Analyzers
with SCPI, and how to use the programming documentation provided with your product.
7

Introduction to Programming X-Series Applications
What Programming Information is Available?
What Programming Information is Available?
The X-Series Documentation can be accessed through the Additional Documentation page in the
instrument Help system and is included on the Documentation CD shipped with the instrument. It can
also be found in the instrument at: C:\ProgramsFiles\Agilent\SignalAnalysis\
Infrastructure\Help\otherdocs, or online at: http://www.agilent.com/find/mxa_manuals.

The following resources are available to help you create programs for automating your X-Series
measurements:

Resource Description

X-Series
Programmer’s Guide

Provides general SCPI programming information on the following topics:

• Programming the X-Series Applications
• Programming fundamentals
• Programming examples

Note that SCPI command descriptions for measurement applications are NOT in this book,
but are in the User’s and Programmer’s Reference.

User’s and
Programmer’s
Reference manuals

Describes all front-panel keys and softkeys, including SCPI commands for a measurement
application. Note that:

• Each measurement application has its own User’s and Programmer’s Reference.
• The content in this manual is duplicated in the analyzer’s Help (the Help that you see

for a key is identical to what you see in this manual).

Embedded Help in
your instrument

Describes all front-panel keys and softkeys, including SCPI commands, for a measurement
application.

Note that the content that you see in Help when you press a key is identical to what you see
in the User’s and Programmer’s Reference.

X-Series Getting
Started Guide

Provides valuable sections related to programming including:

• Licensing New Measurement Application Software - After Initial Purchase
• Configuring instrument LAN Hostname, IP Address, and Gateway Address
• Using the Windows XP Remote Desktop to connect to the instrument remotely
• Using the Embedded Web Server Telnet connection to communicate SCPI

This printed document is shipped with the instrument.

Agilent Application
Notes

Printable PDF versions of pertinent application notes.

Agilent VISA User’s
Guide

Describes the Agilent Virtual Instrument Software Architecture (VISA) library and shows
how to use it to develop I/O applications and instrument drivers on Windows PCs.
 8

http://www.agilent.com/find/mxa_manuals
http://www.agilent.com/find/mxa_manuals

Introduction to Programming X-Series Applications
Using Embedded Help for Programming
Using Embedded Help for Programming
The embedded Help system in your analyzer contains context-sensitive reference information for each
installed measurement application. To see the Help topic for an active function or key, press the green
Help key once the measurement application is open.

Using the Help System on Your PC

The Compiled Help Metafile (CHM) is also provided on the Documentation CD. This enables you to
access the file locally on your PC. In Microsoft Windows, use Windows Explorer to navigate to the
<mode_name>.chm file on the CD, and double-click the file to launch the Help file.

Help System Features Especially Useful for Programmers

Help System Contents Pane

The programming-specific features described below are shown in the Help system Contents Pane (see
Figure 1-1).

• “Help Topics” on page 10
• “List of Commands” on page 11
• A Section called “Remote Only Commands” may be shown.

Figure 1-1 Example Help System “Contents” Pane
 9

Introduction to Programming X-Series Applications
Using Embedded Help for Programming
Help Topics

Included in each Help topic are:

• Definitions for the current active function or Key

• SCPI Command parameters, including limits, presets, variables, and queries

• Associated Remote-Only commands (if used)

Figure 1-2 Example Help Topic - Scale/Div Window
 10

Introduction to Programming X-Series Applications
Using Embedded Help for Programming
List of Commands

The List of Commands is an alphabetically sorted list of all commands in the current measurement
application. Each listing shown is a link to the specific Help Topic that contains the command or query.
See Figure 1-3 on page 11 for an example of a partial List of Commands.

Figure 1-3 Example List of Commands

NOTE You can query the analyzer for all supported SCPI commands in the current mode
by sending the “SYST:HELP:HEAD?” query. For details on how to query the
instrument see “Communicating SCPI Using Telnet” on page 12.
 11

Introduction to Programming X-Series Applications
Communicating SCPI Using Telnet
Communicating SCPI Using Telnet

You can communicate SCPI using a Telnet connection from your PC to the analyzer. The following
procedure describes connecting a PC with a Windows operating system to the analyzer. You will need to
know the IP address of the analyzer.

NOTE In addition to the procedure described below, you can open a Telnet connection
with the analyzer using an internet connection to the Embedded Web Server. This
procedure is described in the Getting Started guide.

To initiate a Telnet session and communicate SCPI using the LAN connection to the analyzer:

Step 1. Obtain the IP address of the analyzer: If you don’t know it, a good way to find it
is as follows:

•In your analyzer, using a mouse or the keyboard, on the Taskbar select Start, Run,
and enter “cmd” to open a DOS session.
 12

Introduction to Programming X-Series Applications
Communicating SCPI Using Telnet
•Enter the DOS command “ipconfig”, and press Enter, and the results should
resemble the window shown below. The IP Address is given under Ethernet
adapter Local Area Connection.

Step 2. Make sure the analyzer Telnet socket is On

•Press System, I/O Config, SCPI LAN, and make sure SCPI Telnet (Port 5023) is
toggled to On.

Step 3. Test your connection over the LAN

•On your PC using Microsoft Windows, in the Taskbar select Start, Run, and enter
“cmd” to open a DOS session.

•Enter the DOS command “ping”, a single space and the IP address of the
analyzer, and press Enter, and the results should resemble the window shown
below. If the LAN connection is working, you will get statistics for Packets Sent
and Packets Received.
 13

Introduction to Programming X-Series Applications
Communicating SCPI Using Telnet

Step 4. In the DOS window, type “telnet <your analyzer IP address> 5023”.
A Telnet window will open with a Welcome answerback from the analyzer Host
Name, and the command prompt will be shown as “SCPI>”. You can enter any
valid SCPI command at the prompt and receive responses to queries sent.

NOTE You can query the analyzer for all supported SCPI commands in the current mode
by sending the “SYST:HELP:HEAD?” query.
 14

Introduction to Programming X-Series Applications
Overview of the GPIB
Overview of the GPIB
An instrument that is part of a GPIB network is categorized as a listener, talker, or controller, depending
on its current function in the network.

Listener A listener is a device capable of receiving data or commands from other instruments.
Any number of instruments in the GPIB network can be listeners simultaneously.

Talker A talker is a device capable of transmitting data or commands to other instruments. To
avoid confusion, a GPIB system allows only one device at a time to be an active
talker.

Controller A controller is an instrument, typically a computer, capable of managing the various
GPIB activities. Only one device at a time can be an active controller.

GPIB Command Statements

Command statements form the nucleus of GPIB programming. They are understood by all instruments in
the network. When combined with the programming language codes, they provide all management and
data communication instructions for the system. Refer to your programming language manual and your
computer’s I/O programming manual for more information.

The seven fundamental command functions are as follows:

• An abort function that stops all listener/talker activity on the interface bus, and prepares all
instruments to receive a new command from the controller. Typically, this is an initialization
command used to place the bus in a known starting condition (sometimes called: abort, abortio, reset,
halt).

• A remote function that causes an instrument to change from local control to remote control. In remote
control, the front panel keys are disabled except for the Local key and the line power switch
(sometimes called: remote, resume).

• A local lockout function, that can be used with the remote function, to disable the front panel Local
key. With the Local key disabled, only the controller (or a hard reset by the line power switch) can
restore local control (sometimes called: local lockout).

• A local function that is the complement to the remote command, causing an instrument to return to
local control with a fully enabled front panel (sometimes called: local, resume).

• A clear function that causes all GPIB instruments, or addressed instruments, to assume a cleared
condition. The definition of clear is unique for each instrument (sometimes called: clear, reset,
control, send).

• An output function that is used to send function commands and data commands from the controller to
the addressed instrument (sometimes called: output, control, convert, image, iobuffer, transfer).

• An enter function that is the complement of the output function and is used to transfer data from the
addressed instrument to the controller (sometimes called: enter, convert, image, iobuffer, on timeout,
set timeout, transfer).
 15

Introduction to Programming X-Series Applications
SCPI Measurement Commands
SCPI Measurement Commands
Specific analyzer commands for set up and initiation of measurements are provided in the User’s and
Programmer’s Reference and in the instrument Help system under the :MEASure command and under
the specific measurement Meas soft key.

Once measurement parameters have been correctly configured, in general, there are 2 methods of
obtaining measurement results remotely: by using the Measure family of commands, and by using
common :CALCulate queries of data parameters.

Measurement Group of Commands

The Measure family of commands is comprised of the MEASure command that executes the entire
measurement, and other separate commands, CONFigure, FETCh, INITiate and READ, which each
accomplish only a part of the overall measurement. FETch and READ are queries. You can optimize
your measurements by creating programs which use MEASure and CONFigure a minimum number of
times, and concentrating on repeating READ, INITiate, and FETCh commands. For more information on
optimizing your measurements see “Improving Measurement Speed” on page 83.

The following graphic illustrates the interactions between the Measurement family of commands:
MEASure, CONFigure, FETCh, INITiate and READ:

NOTE Not all measurements support all MEASure, CONFigure, FETCh, INITiate and
READ commands. See the User’s and Programmer’s Reference for specific
MEASure family command information.

READ

FETChINITiateCONFigure

MEASure (use CONFigure DEFault)

Measurement
 on, sets the
 default state.

Initialize
taking of

data.

Current
 acquired data
is calculated
and returned.

ABORt
returns to
this point vsd26

Start from
any instrument

 state.

Measurement
 on, waiting in
 current state.

CONFigure NDEF

SENSe & CALCulate
commands change the
settings from the
defaults

INITiate:RESTart
 16

Introduction to Programming X-Series Applications
SCPI Measurement Commands
Measure Commands:

:MEASure:<measurement>[n]?

This is a fast single-command way to make a measurement using the factory default
instrument settings. These are the settings and units that conform to the Mode Setup settings
(e.g. radio standard) that you have currently selected.

• Stops the current measurement (if any) and sets up the instrument for the specified
measurement using the factory defaults

• Initiates the data acquisition for the measurement

• Blocks other SCPI communication, waiting until the measurement is complete before
returning results.

• If the function does averaging, it is turned on and the number of averages is set to 10, 25,
or 50, depending upon the current measurement.

• After the data is valid it returns the scalar results, or the trace data, for the specified
measurement. The type of data returned may be defined by an [n] value that is sent with
the command.

The scalar measurement results will be returned if the optional [n] value is not included,
or is set to 1. If the [n] value is set to a value other than 1, the selected trace data results
will be returned. See each command for details of what types of scalar results or trace
data results are available.

ASCII is the default format for the data output. The binary data formats should be used
for handling large blocks of data since they are smaller and faster than the ASCII format.
Refer to the FORMat:DATA command for more information.

If you need to change some of the measurement parameters from the factory default settings
you can set up the measurement with the CONFigure command. Use the commands in the
SENSe:<measurement> and CALCulate:<measurement> subsystems to change the settings.
Then you can use the READ? command to initiate the measurement and query the results.

If you need to repeatedly make a given measurement with settings other than the factory
defaults, you can use the commands in the SENSe:<measurement> and
CALCulate:<measurement> subsystems to set up the measurement. Then use the READ?
command to initiate the measurement and query results.

Measurement settings persist if you initiate a different measurement and then return to a
previous one. Use READ:<measurement>? if you want to use those persistent settings. If you
want to go back to the default settings, use MEASure:<measurement>?.
 17

Introduction to Programming X-Series Applications
SCPI Measurement Commands
Configure Commands:

:CONFigure:<measurement>

This command stops the current measurement (if any) and sets up the instrument for the
specified measurement using the factory default instrument settings. It does not initiate the
taking of measurement data unless INIT:CONTinuous is ON. If you change any measurement
settings after using the CONFigure command, the READ command can be used to initiate a
measurement without changing the settings back to their defaults.

:CONFigure:NDEFault<measurement> stops the current measurement and changes to the
specified measurement. It does not change the settings to the defaults. It does not initiate the
taking of measurement data unless INIT:CONTinuous is ON.

The CONFigure? query returns the current measurement name.

Fetch Commands:

:FETCh:<measurement>[n]?

This command puts selected data from the most recent measurement into the output buffer.
Use FETCh if you have already made a good measurement and you want to return several
types of data (different [n] values, for example, both scalars and trace data) from a single
measurement. FETCh saves you the time of re-making the measurement. You can only
FETCh results from the measurement that is currently active, it will not change to a different
measurement. An error is reported if a measurement other than the current one, is specified.

If you need to get new measurement data, use the READ command, which is equivalent to an
INITiate followed by a FETCh.

The scalar measurement results will be returned if the optional [n] value is not included, or is
set to 1. See each command for details of what types of scalar results or trace data results are
available. The binary data formats should be used for handling large blocks of data since they
are smaller and transfer faster then the ASCII format. (FORMat:DATA)

FETCh may be used to return results other than those specified with the original READ or
MEASure command that you sent.
 18

Introduction to Programming X-Series Applications
SCPI Measurement Commands
INITiate Commands:

:INITiate:<measurement>

This command is not available for measurements in all the instrument modes:

• Initiates a trigger cycle for the specified measurement, but does not output any data. You
must then use the FETCh<meas> command to return data. If a measurement other than
the current one is specified, the instrument will switch to that measurement and then
initiate it.

• For example, suppose you have previously initiated the ACP measurement, but now you
are running the channel power measurement. If you send INIT:ACP? it will change from
channel power to ACP and will initiate an ACP measurement.

• Does not change any of the measurement settings. For example, if you have previously
started the ACP measurement and you send INIT:ACP? it will initiate a new ACP
measurement using the same instrument settings as the last time ACP was run.

• If your selected measurement is currently active (in the idle state) it triggers the
measurement, assuming the trigger conditions are met. Then it completes one trigger
cycle. Depending upon the measurement and the number of averages, there may be
multiple data acquisitions, with multiple trigger events, for one full trigger cycle. It also
holds off additional commands on GPIB until the acquisition is complete.

READ Commands:

:READ:<measurement>[n]?

• Does not preset the measurement to the factory default settings. For example, if you have
previously initiated the ACP measurement and you send READ:ACP? it will initiate a
new measurement using the same instrument settings.

• Initiates the measurement and puts valid data into the output buffer. If a measurement
other than the current one is specified, the instrument will switch to that measurement
before it initiates the measurement and returns results.

For example, suppose you have previously initiated the ACP measurement, but now you
are running the channel power measurement. Then you send READ:ACP? It will change
from channel power back to ACP and, using the previous ACP settings, will initiate the
measurement and return results.

• Blocks other SCPI communication, waiting until the measurement is complete before
returning the results

If the optional [n] value is not included, or is set to 1, the scalar measurement results will
be returned. If the [n] value is set to a value other than 1, the selected trace data results
will be returned. See each command for details of what types of scalar results or trace
data results are available. The binary data formats should be used when handling large
blocks of data since they are smaller and faster then the ASCII format. (FORMat:DATA)
 19

Introduction to Programming X-Series Applications
SCPI Measurement Commands
Common Measurement Commands

Current Measurement Query (Remote Command Only)

This command returns the name of the measurement that is currently running.

Test current results against all limits (Remote Command Only)

Queries the status of the current measurement limit testing. It returns a 0 if the measured results pass
when compared with the current limits. It returns a 1 if the measured results fail any limit tests.

Data Query (Remote Command Only)

Returns the designated measurement data for the currently selected measurement and subopcode.

n = any valid subopcode for the current measurement. See the measurement command results table for
your current measurement, for information about what data is returned for the subopcodes.

This command uses the data setting specified by the FORMat:BORDer and FORMat:DATA commands
and can return real or ASCII data. (See the format command descriptions under Input/Output in the
Analyzer Setup section.)

Remote Command :CONFigure?

Example CONF?

Remote Command :CALCulate:CLIMits:FAIL?

Example CALC:CLIM:FAIL? queries the current
measurement to see if it fails the defined limits.

Returns a 0 or 1: 0 it passes, 1 it fails.

Remote Command :CALCulate:DATA[n]?

Remote Command Notes The return trace depends on the measurement.

In CALCulate:<meas>:DATA[n], n is any valid
subopcode for the current measurement. It returns
the same data as the FETCh:<measurement>?
query where <measurement> is the current
measurement.
 20

Introduction to Programming X-Series Applications
SCPI Measurement Commands
Calculate/Compress Trace Data Query

Returns compressed data for the currently selected measurement and sub-opcode [n].

n = any valid sub-opcode for that measurement. See the MEASure:<measurement>? command
description of your specific measurement for information on the data that can be returned.

The data is returned in the current Y Axis Unit of the analyzer. The command is used with a sub-opcode
<n> (default=1) to specify the trace. With trace queries, it is best if the analyzer is not sweeping during
the query. Therefore, it is generally advisable to be in Single Sweep, or Update=Off.

This command is used to compress or decimate a long trace to extract and return only the desired data. A
typical example would be to acquire N frames of GSM data and return the mean power of the first burst
in each frame. The command can also be used to identify the best curve fit for the data.

Remote Command :CALCulate:DATA<n>:COMPress?
BLOCk|CFIT|MAXimum|MINimum|MEAN|DMEan|
RMS|RMSCubed|SAMPle|SDEViation|PPHase
[,<soffset>[,<length>[,<roffset>[,<rli
mit>]]]]

Example To query the mean power of a set of GSM bursts:

Supply a signal that is a set of GSM bursts.

Select the IQ Waveform measurement (in IQ
Analyzer Mode).

Set the sweep time to acquire at least one burst.

Set the triggers such that acquisition happens at a
known position relative to a burst.

Then query the mean burst levels using,
CALC:DATA2:COMP? MEAN,24e–6,526e–6
(These parameter values correspond to GSM signals,
where 526e–6 is the length of the burst in the slot and
you just want 1 burst.)

Remote Command Notes The command supports 5 parameters. Note that the
last 4 (<soffset>,<length>,<roffset>,<rlimit>) are
optional. But these optional parameters must be
entered in the specified order. For example, if you
want to specify <length>, then you must also specify
<soffset>. See details below for a definition of each
of these parameters.

This command uses the data in the format specified
by FORMat:DATA, returning either binary or ASCII
data.
 21

Introduction to Programming X-Series Applications
SCPI Measurement Commands
• BLOCk or block data - returns all the data points from the region of the trace data that you specify.
For example, it could be used to return the data points of an input signal over several timeslots,
excluding the portions of the trace data that you do not want. (This is x,y pairs for trace data and I,Q
pairs for complex data.)

• CFIT or curve fit - applies curve fitting routines to the data. <soffset> and <length> are required to
define the data that you want. <roffset> is an optional parameter for the desired order of the curve
equation. The query will return the following values: the x-offset (in seconds) and the curve
coefficients ((order + 1) values).

MIN, MAX, MEAN, DME, RMS, RMSC, SAMP, SDEV and PPH return one data value for each
specified region (or <length>) of trace data, for as many regions as possible until you run out of trace
data (using <roffset> to specify regions). Or they return the number of regions you specify (using
<rlimit>) ignoring any data beyond that.

• MINimum - returns the minimum data point (x,y pair) for the specified region(s) of trace data. For
I/Q trace data, the minimum magnitude of the I/Q pairs is returned.

• MAXimum - returns the maximum data point (x,y pair) for the specified region(s) of trace data. For
I/Q trace data, the maximum magnitude of the I/Q pairs is returned.

MEAN - returns a single value that is the arithmetic mean of the data point values (in dB/ dBm) for the
specified region(s) of trace data. For I/Q trace data, the mean of the magnitudes of the I/Q pairs is
returned. See the following equations.

NOTE If the original trace data is in dB, this function returns the arithmetic mean of those
log values, not log of the mean power which is a more useful value. The mean of
the log is the better measurement technique when measuring CW signals in the
presence of noise. The mean of the power, expressed in dB, is useful in power
measurements such as Channel Power. To achieve the mean of the power, use the
RMS option.
 22

Introduction to Programming X-Series Applications
SCPI Measurement Commands
Equation 1
Mean Value of Data Points for Specified Region(s)

where Xi is a data point value, and n is the number of data points in the specified region(s).

Equation 2
Mean Value of I/Q Data Pairs for Specified Region(s)

where |Xi| is the magnitude of an I/Q pair, and n is the number of I/Q pairs in the specified region(s).

• DMEan - returns a single value that is the mean power (in dB/ dBm) of the data point values for the
specified region(s) of trace data. See the following equation:

Equation 3
DMEan Value of Data Points for Specified Region(s)

• RMS - returns a single value that is the average power on a root-mean-squared voltage scale
(arithmetic rms) of the data point values for the specified region(s) of trace data. See the following
equation.

For I/Q trace data, the rms of the magnitudes of the I/Q pairs is returned. See the following equation.

NOTE This function is very useful for I/Q trace data. However, if the original trace data is
in dB, this function returns the rms of the log values which is not usually needed.

Σ Xi1_
n

Xi ∈ region(s)
MEAN =

vsd27-1

Σ |Xi|1_
n

Xi ∈ region(s)
MEAN =

vsd27-2

Σ1_
n

Xi ∈ region(s)
DME = 10 x log10

vsd27-3

10
Xi
10
 23

Introduction to Programming X-Series Applications
SCPI Measurement Commands
Equation 4
RMS Value of Data Points for Specified Region(s)

where Xi is a data point value, and n is the number of data points in the specified region(s).

Equation 5
RMS Value of I/Q Data Pairs for Specified Region(s)

where Xi is the complex value representation of an I/Q pair, Xi* its conjugate complex number, and n
is the number of I/Q pairs in the specified region(s).

Once you have the rms value for a region of trace data (linear or I/Q), you may want to calculate the
mean power. You must convert this rms value (peak volts) to power in dBm:

10 x log[10 x (rms value)2]

• SAMPle - returns the first data value (x,y pair) for the specified region(s) of trace data. For I/Q trace
data, the first I/Q pair is returned.

• SDEViation - returns a single value that is the arithmetic standard deviation for the data point values
for the specified region(s) of trace data. See the following equation.

For I/Q trace data, the standard deviation of the magnitudes of the I/Q pairs is returned. See the
following equation.

Equation 6
Standard Deviation of Data Point Values for Specified Region(s)

where Xi is a data point value, X is the arithmetic mean of the data point values for the specified
region(s), and n is the number of data points in the specified region(s).

where |Xi| is the magnitude of an I/Q pair, X is the mean of the magnitudes for the specified region(s),
and n is the number of data points in the specified region(s).

ΣXi21_
n

Xi ∈ region(s)
RMS =

vsd27-4

Σ Xi Xi*1_
n

Xi ∈ region(s)
RMS =

vsd27-5

Σ(Xi – X)21_
n

Xi ∈ region(s)
SDEV = –

vsd27-7

Σ(|Xi| – X)21_
n

Xi ∈ region(s)
SDEV = –

vsd27-8
 24

Introduction to Programming X-Series Applications
SCPI Measurement Commands
• PPHase - returns the x,y pairs of both rms power (dBm) and arithmetic mean phase (radian) for every
specified region and frequency offset (Hz). The number of pairs is defined by the specified number of
regions. This parameter can be used for I/Q vector (n=0) in Waveform (time domain) measurement
and all parameters are specified by data point in PPHase.

The rms power of the specified region may be expressed as:

Power = 10 x log [10 x (RMS I/Q value)] + 10.

The RMS I/Q value (peak volts) is:

where Xi is the complex value representation of an I/Q pair, Xi* its conjugate complex number, and n
is the number of I/Q pairs in the specified region.

The arithmetic mean phase of the specified region may be expressed as:

where Yi is the unwrapped phase of I/Q pair with applying frequency correction and n is the number
of I/Q pairs in the specified region.

The frequency correction is made by the frequency offset calculated by the arithmetic mean of every
specified region’s frequency offset. Each frequency offset is calculated by the least square method
against the unwrapped phase of I/Q pair.

Σ1_
n

Xi ∈ region vsd27-9

Xi Xi*

Σ Yi1_
n

Yi ∈ region vsd27-10
 25

Introduction to Programming X-Series Applications
SCPI Measurement Commands
Sample Trace Data - Constant Envelope

(See below for explanation of variables.)

Sample Trace Data - Not Constant Envelope

(See below for explanation of variables.)

<soffset> - start offset is an optional real number. (It is in seconds for time-domain traces, and is a
dimensionless index 0 to Npoints – 1, for frequency-domain traces). It specifies the amount of data at
the beginning of the trace that will be ignored before the decimation process starts. It is the time or
frequency change from the start of the trace to the point where you want to start using the data. The
default value is zero.

<length> - is an optional real number. (It is in seconds for time-domain traces, and is a dimensionless
index 0 to Npoints – 1, for frequency-domain traces). It defines how much data will be compressed
into one value. This parameter has a default value equal to the current trace length.

t0

soffset

length

roffset If rlimit is set to 3, this
last chunk of data will
be ignored.

vsd29

t0

soffset

length

roffset

If rlimit is set to 3, this
chunk of data and any
additional data will be
ignored.

vsd30
 26

Introduction to Programming X-Series Applications
SCPI Measurement Commands
<roffset> - repeat offset is an optional real number. (It is in seconds for time-domain traces, and is a
dimensionless index 0 to Npoints – 1, for frequency-domain traces). It defines the beginning of the
next field of trace elements to be compressed. This is relative to the beginning of the previous field.
This parameter has a default value equal to the <length> variable. Note that this parameter is used for
a completely different purpose when curve fitting (see CFIT above).

<rlimit> - repeat limit is an optional integer. It specifies the number of data items that you want
returned. It will ignore any additional items beyond that number. You can use the Start offset and the
Repeat limit to pick out exactly what part of the data you want to use. The default value is all the data.

Calculate peaks of trace data (Remote Command Only)

Returns a list of all the peaks for the currently selected measurement and sub-opcode [n]. The peaks must
meet the requirements of the peak threshold and excursion values.

n = any valid sub-opcode for the current measurement. See the MEASure:<measurement> command
description of your specific measurement for information on the data that can be returned.

The command can only be used with specific sub-opcodes with measurement results that are trace data.
Both real and complex traces can be searched, but complex traces are converted to magnitude in dBm. In
many measurements the sub-opcode n=0, is the raw trace data which cannot be searched for peaks. And
Sub-opcode n=1, is often calculated results values which also cannot be searched for peaks.

This command uses the data setting specified by the FORMat:BORDer and FORMat:DATA commands
and can return real or ASCII data. If the format is set to INT,32, it returns REAL,32 data.

The command has four types of parameters:

• Threshold (in dBm)

• Excursion (in dB)

• Sorting order (amplitude, frequency, time)

• Optional in some measurements: Display line use (all, > display line, < display line)
 27

Introduction to Programming X-Series Applications
SCPI Measurement Commands
Remote Command :CALCulate:DATA[1]|2|3|4|5|6:PEAKs?
<real>,<real>[,AMPLitude|FREQuency|TIME[,ALL|GTDLine|L
TDLine]]

Remote Command For Swept SA measurement:

:CALCulate:DATA[1]|2|3|4|5|6:PEAKs?
<threshold>,<excursion>[,AMPLitude|FREQuency|TIME[,ALL
|GTDLine|LTDLine]]

For most other measurements:

:CALCulate:DATA[1]|2|3|4|5|6:PEAKs?
<threshold>,<excursion>[,AMPLitude|FREQuency|TIME]

Example Example for Swept SA measurement in Spectrum Analyzer Mode:

CALC:DATA4:PEAK? –40,10,FREQ,GTDL This will identify the peaks of
trace 4 that are above –40 dBm, with excursions of at least 10 dB. The peaks
are returned in order of increasing frequency, starting with the lowest
frequency. Only the peaks that are above the display line are returned.

Query Results 1:

With FORMat:DATA REAL,32 selected, it returns a list of floating-point
numbers. The first value in the list is the number of peak points that are in
the following list. A peak point consists of two values: a peak amplitude
followed by its corresponding frequency (or time).

If no peaks are found the peak list will consist of only the number of peaks,
(0).
 28

Introduction to Programming X-Series Applications
SCPI Measurement Commands
Remote Command Notes <n> - is the trace that will be used

<threshold> - is the level below which trace data peaks are ignored. Note
that the threshold value is required and is always used as a peak criterion. To
effectively disable the threshold criterion for this command, provide a
substantially low threshold value such as –200 dBm. Also note that the
threshold value used in this command is independent of and has no effect on
the threshold value stored under the Peak Criteria menu.

<excursion> - is the minimum amplitude variation (rise and fall) required
for a signal to be identified as peak. Note that the excursion value is required
and is always used as a peak criterion. To effectively disable the excursion
criterion for this command, provide the minimum value of 0.0 dB. Also note
that the excursion value used in this command is independent of and has no
effect on the excursion value stored under the Peak Criteria menu.

Sorting order:

AMPLitude - lists the peaks in order of descending amplitude, with the
highest peak first (default if optional parameter not sent)

FREQuency - lists the peaks in order of occurrence, left to right across the
x-axis.

TIME - lists the peaks in order of occurrence, left to right across the x-axis.

Peaks vs. Display Line:

ALL - lists all of the peaks found (default if optional parameter not sent).

GTDLine (greater than display line) - lists all of the peaks found above the
display line.

LTDLine (less than display line) - lists all of the peaks found below the
display line.

Dependencies/Couplings Values must be provided for threshold and excursion. The sorting and
display line parameters are optional (defaults are AMPLitude and ALL).

Note that there is always a Y-axis value for the display line, regardless of
whether the display line state is on or off. It is the current Y-axis value of the
display line which is used by this command to determine whether a peak
should be reported.
 29

Introduction to Programming X-Series Applications
SCPI Measurement Commands
Format Data: Numeric Data (Remote Command Only)

This command specifies the format of the trace data input and output. It specifies the formats used for
trace data during data transfer across any remote port. It affects only the data format for setting and
querying trace data for the :TRACe[:DATA], TRACe[:DATA]?, :CALCulate:DATA[n]? and
FETCh:SANalyzer[n]? commands and queries.

Remote Command :FORMat[:TRACe][:DATA] ASCii|INTeger,32|REAL,32 |REAL,64

:FORMat[:TRACe][:DATA]?

Dependencies/
Couplings

Sending a data format spec with an invalid number (for example, INT,48) generates no
error. The analyzer simply uses the default (8 for ASCii, 32 for INTeger, 32 for REAL).

Sending data to the analyzer which does not conform to the current FORMat specified,
results in an error.

Remote Command
Notes

The query response is:

ASCii: ASC,8

REAL,32: REAL,32

REAL,64: REAL,64

INTeger,32: INT,32

When the numeric data format is REAL or ASCii, data is output in the current Y Axis
unit. When the data format is INTeger, data is output in units of m dBm (0.001 N dBm).

Note that the INT,32 format is only applicable to the command, TRACe:DATA. This
preserves backwards compatibility for the Swept SA measurement. For all other
commands/queries which honor FORMat:DATA, if INT,32 is sent the analyzer will
behave as though it were set to REAL,32.

The INT,32 format returns binary 32-bit integer values in internal units (m dBm), in a
definite length block.

Preset ASCii
 30

Introduction to Programming X-Series Applications
SCPI Measurement Commands
The specs for each output type follow:

ASCii - Amplitude values are in ASCII, in the current Y Axis Unit, one ASCII character per digit, values
separated by commas, each value in the form:

SX.YYYYYEsZZ

Where:

S = sign (+ or -)

X = one digit to left of decimal point

Y = 5 digits to right of decimal point

E = E, exponent header

s = sign of exponent (+ or -)

ZZ = two digit exponent

REAL,32 - Binary 32-bit real values in the current Y Axis Unit, in a definite length block.

REAL,64 - Binary 64-bit real values in the current Y Axis Unit, in a definite length block.

Format Data: Byte Order (Remote Command Only)

This command selects the binary data byte order for data transfer and other queries. It controls whether
binary data is transferred in normal or swapped mode. This command affects only the byte order for
setting and querying trace data for the :TRACe[:DATA], TRACe[:DATA]?, :CALCulate:DATA[n]? and
FETCh:SANalyzer[n]? commands and queries.

By definition any command that says it uses FORMat:DATA uses any format supported by
FORMat:DATA.

The NORMal order is a byte sequence that begins with the most significant byte (MSB) first, and ends
with the least significant byte (LSB) last in the sequence: 1|2|3|4. SWAPped order is when the byte
sequence begins with the LSB first, and ends with the MSB last in the sequence: 4|3|2|1.

Remote Command :FORMat:BORDer NORMal|SWAPped

:FORMat:BORDer?

Preset NORMal
 31

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
STATus Subsystem (No equivalent front-panel keys)
The following graphics show the current X-Series Status Register Subsystem implementation.
 32

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
 33

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Detailed Description

The STATus subsystem remote commands set and query the status hardware registers. This system of
registers monitors various events and conditions in the instrument. Software written to control the
instrument may need to monitor some of these events and conditions.

NOTE All status register commands are sequential. Most commands can be started
immediately and will overlap with any existing commands that are already
running. This is not true of status commands. All the commands in the spectrum
analyzer are assumed to be overlapped unless a command description specifically
says that it is sequential.

What Are Status Registers

The status system contains multiple registers that are arranged in a hierarchical order. The lower-level
status registers propagate their data to the higher-level registers in the data structures by means of
summary bits. The status byte register is at the top of the hierarchy and contains general status
information for the instrument’s events and conditions. All other individual registers are used to
determine the specific events or conditions. For a diagram of the registers and their interconnections, see
above.

The operation and questionable status registers are sets of registers that monitor the overall instrument
condition. They are accessed with the STATus:OPERation and STATus:QUEStionable commands in the
STATus command subsystem. Each register set is made up of five registers:

• Condition Register – It reports the real-time state of the signals monitored by this register set. There
is no latching or buffering for a condition register.

• Positive Transition Register – This filter register controls which signals will set a bit in the event
register when the signal makes a low to high transition (when the condition bit changes from 0 to 1).

• Negative Transition Register – This filter register controls which signals will set a bit in the event
register when the signal makes a high to low transition (when the condition bit changes from 1 to 0).

• Event Register – It latches any signal state changes, in the way specified by the filter registers. Bits in
the event register are never cleared by signal state changes. Event registers are cleared when read.
They are also cleared by *CLS and by presetting the instrument.

• Event Enable Register – It controls which of the bits, being set in the event register, will be
summarized as a single output for the register set. Summary bits are then used by the next higher
register.

The STATus:QUEStionable registers report abnormal operating conditions. The status register hierarchy
is:

1. The summary outputs from the six STATus:QUEStionable:<keyword> detail registers are inputs to
the STATus:QUEStionable register.

2. The summary output from the STATus:QUEStionable register is an input to the Status Byte Register.
See the overall system in Figure at the beginning of this section.
 34

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
The STATus:OPERation register set has no summarized inputs. The inputs to the
STATus:OPERation:CONDition register indicate the real time state of the instrument. The
STATus:OPERation:EVENt register summary output is an input to the Status Byte Register.

What Are Status Register SCPI Commands

Most monitoring of the instrument conditions is done at the highest level using the IEEE common
commands indicated below. Complete command descriptions are available in the IEEE commands
section at the beginning of the language reference. Individual status registers can be set and queried
using the commands in the STATus subsystem of the language reference.

• *CLS (clear status) clears the status byte by emptying the error queue and clearing all the event
registers.

• *ESE, *ESE? (event status enable) sets and queries the bits in the enable register part of the standard
event status register.

• *ESR? (event status register) queries and clears the event register part of the standard event status
register.

• *OPC, *OPC? (operation complete) sets the standard event status register to monitor the completion
of all commands. The query stops any new commands from being processed until the current
processing is complete, then returns a ‘1’.

• *PSC, *PSC? (power-on state clear) sets the power-on state so that it clears the service request enable
register and the event status enable register at power on.

• *SRE, *SRE? (service request enable) sets and queries the value of the service request enable
register.

• *STB? (status byte) queries the value of the status byte register without erasing its contents.

How to Use the Status Registers

A program often needs to be able to detect and manage error conditions or changes in instrument status.
There are two methods you can use to programmatically access the information in status registers:

• The polling method

• The service request (SRQ) method

In the polling method, the instrument has a passive role. It only tells the controller that conditions have
changed when the controller asks the right question. In the SRQ method, the instrument takes a more
active role. It tells the controller when there has been a condition change without the controller asking.
Either method allows you to monitor one or more conditions.

The polling method works well if you do not need to know about changes the moment they occur. The
SRQ method should be used if you must know immediately when a condition changes. To detect a
change using the polling method, the program must repeatedly read the registers.

Use the SRQ method when:

• you need time-critical notification of changes

• you are monitoring more than one device which supports SRQs
 35

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
• you need to have the controller do something else while waiting

• you can’t afford the performance penalty inherent to polling

Use polling when:

• your programming language/development environment does not support SRQ interrupts

• you want to write a simple, single-purpose program and don’t want the added complexity of setting
up an SRQ handler

• To monitor a condition:

1. Determine which register contains the bit that reports the condition.

2. Send the unique SCPI query that reads that register.

3. Examine the bit to see if the condition has changed.

You can monitor conditions in different ways.

• Check the current instrument hardware and firmware status.

Do this by querying the condition registers which continuously monitor status. These registers represent
the current state of the instrument. Bits in a condition register are updated in real time. When the
condition monitored by a particular bit becomes true, the bit is set to 1. When the condition becomes
false, the bit is reset to 0.

• Monitor a particular condition (bit).

You can enable a particular bit(s), using the event enable register. The instrument will then monitor that
particular condition(s). If the bit becomes true (0 to 1 transition) in the event register, it will stay set until
the event register is cleared. Querying the event register allows you to detect that this condition occurred
even if the condition no longer exists. The event register can only be cleared by querying it or sending
the *CLS command.

• Monitor a particular type of change in a condition (bit).

— The transition registers are preset to register if the condition goes from 0 to 1 (false to true, or a
positive transition).

— This can be changed so the selected condition is detected if the bit goes from 1 to 0 (true to false,
or a negative transition).

— It can also be set for both types of transitions occurring.

— Or it can be set for neither transition. If both transition registers are set to 0 for a particular bit
position, that bit will not be set in the event register for either type of change.

Using a Status Register

Each bit in a register is represented by a numerical value based on its location. See figure below. This
number is sent with the command to enable a particular bit. If you want to enable more than one bit, you
would send the sum of all the bits that you want to monitor.
 36

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Figure: Status Register Bit Values

Bit 15 is not used to report status.

Example 1:

1. To enable bit 0 and bit 6 of standard event status register, send the command *ESE 65 because 1 + 64
= 65.

2. The results of a query are evaluated in a similar way. If the *STB? command returns a decimal value
of 140, (140 = 128 + 8 + 4), then bit 7 is true, bit 3 is true and bit 2 is true.

Example 2:

1. Suppose you want to know if an Auto-trigger Timeout occurs, but you only care about that specific
condition. For example, you want to know what was happening with bit 10 in the Status Questionable
Integrity register, and do not care about any other bits.

2. It’s usually a good idea to start by clearing all the status registers with *CLS.

3. Sending the STAT:QUES:INT:ENAB 1024 command enables you to monitor only bit 10 events,
instead of the default monitoring all the bits in the register. The register default is for positive
transition events (0 to 1 transition) that show when an auto-trigger timeout occurs. If you want to
know when the Auto-trigger timeout condition is cleared, set the STAT:QUES:INT:PTR 0 and the
STAT:QUES:INT:NTR 32767.

4. So now the only output from the Status Questionable Integrity register will come from a bit 10
positive transition. That output goes to the Integrity Sum bit 9 of the Status Questionable register.

5. You can do a similar thing with this register to look at only bit 9 using, STAT:QUES:ENAB 512.

6. The Status Questionable register output goes to the “Status Questionable Summary” bit 3 of the
Status Byte Register. The output from this register can be enabled using the *SRE 8 command.

7. Finally, you can use the serial polling functionality available for the particular bus/software that you
are using to monitor the Status Byte Register. (You can also use *STB? to poll the Status Byte
Register.)
 37

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Using the Service Request (SRQ) Method

Your language, bus, and programming environment must be able to support SRQ interrupts. (For
example, BASIC used with VXI–11.3 (GPIB over LAN). When you monitor a condition with the SRQ
method, you must:

1. Determine which bit monitors the condition.

2. Determine how that bit reports to the request service (RQS) bit of the status byte.

3. Send SCPI commands to enable the bit that monitors the condition and to enable the summary bits
that report the condition to the RQS bit.

4. Enable the controller to respond to service requests.

When the condition changes, the instrument sets its RQS bit. The controller is informed of the change as
soon as it occurs. As a result, the time the controller would otherwise have used to monitor the condition
can be used to perform other tasks. Your program determines how the controller responds to the SRQ.

Generating a Service Request

To use the SRQ method, you must understand how service requests are generated. Bit 6 of the status byte
register is the request service (RQS) bit. The *SRE command is used to configure the RQS bit to report
changes in instrument status. When such a change occurs, the RQS bit is set. It is cleared when the status
byte register is queried using *SRE? (with a serial poll.) It can be queried without erasing the contents
with *STB?.

When a register set causes a summary bit in the status byte to change from 0 to 1, the instrument can
initiate the service request (SRQ) process. However, the process is only initiated if both of the following
conditions are true:

• The corresponding bit of the service request enable register is also set to 1.

• The instrument does not have a service request pending. (A service request is considered to be
pending between the time the instrument’s SRQ process is initiated and the time the controller reads
the status byte register.)

The SRQ process sets the SRQ true. It also sets the status byte’s request service (RQS) bit to 1. Both
actions are necessary to inform the controller that the instrument requires service. Setting the SRQ line
only informs the controller that some device on the bus requires service. Setting the RQS bit allows the
controller to determine which instrument requires service.

If your program enables the controller to detect and respond to service requests, it should instruct the
controller to perform a serial poll when the SRQ is set true. Each device on the bus returns the contents
of its status byte register in response to this poll. The device who's RQS bit is set to 1 is the device that
requested service.

When you read the instrument’s status byte register with a serial poll, the RQS bit is reset to 0. Other bits
in the register are not affected.
 38

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
If the status register is configured to SRQ on end-of-measurement and the measurement is in continuous
mode, then restarting a measurement (INIT command) can cause the measuring bit to pulse low. This
causes an SRQ when you have not actually reached the "end-of-measurement" condition. To avoid this:

1. Set INITiate:CONTinuous off.

2. Set/enable the status registers.

3. Restart the measurement (send INIT).

Status Register System

The hardware status registers are combined to form the instrument status system. Specific status bits are
assigned to monitor various aspects of the instrument operation and status. See the diagram of the status
system above for information about the bit assignments and status register interconnections.

The Status Byte Register

The RQS bit is read and reset by a serial poll. The same bit position (MSS) is read, non-destructively by
the *STB? command. If you serial poll bit 6 it is read as RQS, but if you send *STB it reads bit 6 as
MSS. For more information refer to IEEE 488.2 standards, section 11.
 39

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
To query the status byte register, send the command *STB? The response will be the decimal sum of the
bits which are set to 1. For example, if bit number 7 and bit number 3 are set to 1, the decimal sum of the
2 bits is 128 plus 8. So the decimal value 136 is returned. The *STB command does not clear the status
register.

In addition to the status byte register, the status byte group also contains the service request enable
register. This register lets you choose which bits in the status byte register will trigger a service request.

Send the *SRE <integer> command where <integer> is the sum of the decimal values of the bits you
want to enable plus the decimal value of bit 6. For example, assume that you want to enable bit 7 so that
whenever the standard operation status register summary bit is set to 1 it will trigger a service request.
Send the command *SRE 192 (because 192 = 128 + 64). You must always add 64 (the numeric value of

Bit Description

0, 1 These bits are always set to 0.

2 A 1 in this bit position indicates that the SCPI error queue is not empty which means that it contains at
least one error message.

3 A 1 in this bit position indicates that the data questionable summary bit has been set. The data
questionable event register can then be read to determine the specific condition that caused this bit to
be set.

4 A 1 in this bit position indicates that the instrument has data ready in the output queue. There are no
lower status groups that provide input to this bit.

5 A 1 in this bit position indicates that the standard event summary bit has been set. The standard event
status register can then be read to determine the specific event that caused this bit to be set.

6 A 1 in this bit position indicates that the instrument has at least one reason to report a status change.
This bit is also called the master summary status bit (MSS).

7 A 1 in this bit position indicates that the standard operation summary bit has been set. The standard
operation event register can then be read to determine the specific condition that caused this bit to be
set.
 40

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
RQS bit 6) to your numeric sum when you enable any bits for a service request. The command *SRE?
returns the decimal value of the sum of the bits previously enabled with the *SRE <integer> command.

The service request enable register presets to zeros (0).

Standard Event Status Register
 41

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
The standard event status register contains the following bits:

The standard event status register is used to determine the specific event that set bit 5 in the status byte
register. To query the standard event status register, send the command *ESR?. The response will be the
decimal sum of the bits which are enabled (set to 1). For example, if bit number 7 and bit number 3 are
enabled, the decimal sum of the 2 bits is 128 plus 8. So the decimal value 136 is returned.

Bit Description

0 A 1 in this bit position indicates that all pending operations were completed following execution of the
*OPC command.

1 This bit is for GPIB handshaking to request control. Currently it is set to 0 because there are no
implementations where the spectrum analyzer controls another instrument.

2 A 1 in this bit position indicates that a query error has occurred. Query errors have SCPI error numbers
from -499 to -400.

3 A 1 in this bit position indicates that a device dependent error has occurred. Device dependent errors
have SCPI error numbers from -399 to -300 and 1 to 32767.

4 A 1 in this bit position indicates that an execution error has occurred. Execution errors have SCPI error
numbers from -299 to -200.

5 A 1 in this bit position indicates that a command error has occurred. Command errors have SCPI error
numbers from -199 to -100.

6 A 1 in this bit position indicates that the LOCAL key has been pressed. This is true even if the
instrument is in local lockout mode.

7 A 1 in this bit position indicates that the instrument has been turned off and then on.
 42

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
In addition to the standard event status register, the standard event status group also contains a standard
event status enable register. This register lets you choose which bits in the standard event status register
will set the summary bit (bit 5 of the status byte register) to 1. Send the *ESE <integer> command where
<integer> is the sum of the decimal values of the bits you want to enable. For example, to enable bit 7
and bit 6 so that whenever either of those bits is set to 1, the standard event status summary bit of the
status byte register will be set to 1, send the command *ESE 192 (128 + 64). The command *ESE?
returns the decimal value of the sum of the bits previously enabled with the *ESE <integer> command.

The standard event status enable register presets to zeros (0).

Operation and Questionable Status Registers

The operation and questionable status registers are registers that monitor the overall instrument
condition. They are accessed with the STATus:OPERation and STATus:QUEStionable commands in the
STATus command subsystem. See the figure at the beginning of this chapter.

Operation Status Register

The operation status register monitors the current instrument measurement state. It checks to see if the
instrument is calibrating, sweeping, or waiting for a trigger. For more information see the *OPC?
command located in the IEEE Common Commands section.

Bit Condition Operation

0 Calibrating The instrument is busy executing its Align Now process

3 Sweeping The instrument is busy taking a sweep.

4 Measuring The instrument is busy making a measurement. Measurements often require
multiple sweeps. They are initiated by keys under the MEASURE key or
with the MEASure group of commands.

The bit is valid for most X-Series Modes.

5 Waiting for trigger The instrument is waiting for the trigger conditions to be met, then it will
trigger a sweep or measurement.
 43

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Status Register

The questionable status register monitors the instrument’s condition to see if anything questionable has
happened to it. It is looking for anything that might cause an error or a bad measurement like a hardware
problem, an out of calibration situation, or a unusual signal. All the bits are summary bits from
lower-level event registers.

STATus Subsystem Command Descriptions

The STATus subsystem controls the SCPI-defined instrument status reporting structures. Each status
register has a set of five commands used for querying or masking that particular register.

Numeric values for bit patterns can be entered using decimal or hexadecimal representations. (i.e. 0 to
32767 is equivalent to #H0 to #H7FFF. It is also equal to all ones, 111111111111111) See the SCPI
Basics information about using bit patterns for variable parameters.

Operation Register

Operation Condition Query

This query returns the decimal value of the sum of the bits in the Status Operation Condition register.

NOTE The data in this register is continuously updated and reflects the current conditions.

8 Paused The instrument is paused (waiting) because you have pressed the Pause Meas
Control key or send the INITiate:PAUSe command.

Bit is currently only valid for Modes: ESA/PSA: Spectrum Analysis, Phase
Noise, and ESA: Bluetooth, cdmaOne, GSM

Bit Condition Operation

3 Power summary The instrument hardware has detected a power unleveled condition.

4 Temperature summary The instrument is still warming up.

5 Frequency summary The instrument hardware has detected an unlocked condition or a problem
with the external frequency reference.

8 Calibration summary The instrument has detected a hardware problem while doing the
automatic internal alignment process.

9 Integrity summary The instrument has detected a questionable measurement condition such
as: bad timing, bad signal/data, timeout problem, signal overload, or
“meas uncal”.

Mode All

Remote Command :STATus:OPERation:CONDition?

Bit Condition Operation
 44

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Operation Enable

This command determines which bits in the Operation Event register, will set the Operation Status
Summary bit (bit 7) in the Status Byte Register. The variable <integer> is the sum of the decimal values
of the bits you want to enable.

NOTE The preset condition is to have all bits in this enable register set to 0. To have any
Operation Events reported to the Status Byte Register, one or more bits need to be
set to 1.

Operation Event Query

This query returns the decimal value of the sum of the bits in the Operation Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The data in this register is
latched until it is queried. Once queried, the register is cleared.

Example STAT:OPER:COND?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:OPERation:ENABle <integer>

:STATus:OPERation:ENABle?

Example STAT:OPER:ENAB 1 Sets the register so that Align Now operation will be
reported to the Status Byte Register.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:OPERation[:EVENt]?

Example STAT:OPER?
 45

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Operation Negative Transition

This command determines which bits in the Operation Condition register will set the corresponding bit
in the Operation Event register when the condition register bit has a negative transition (1 to 0). The
variable <integer> is the sum of the decimal values of the bits that you want to enable.

Operation Positive Transition

This command determines which bits in the Operation Condition register will set the corresponding bit
in the Operation Event register when the condition register bit has a positive transition (0 to 1). The
variable <integer> is the sum of the decimal values of the bits that you want to enable.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:OPERation:NTRansition <integer>

:STATus:OPERation:NTRansition?

Example STAT:OPER:NTR 1 Align Now operation complete will be reported to the
Status Byte Register.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:OPERation:PTRansition <integer>

:STATus:OPERation:PTRansition?

Example STAT:OPER:PTR 1 Align Now operation beginning will be reported to the
Status Byte Register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 46

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Preset the Status Byte

Sets bits in most of the enable and transition registers to their default state. It presets all the Transition
Filters, Enable Registers, and the Error/Event Queue Enable. It has no effect on Event Registers,
Error/Event QUEue, IEEE 488.2 ESE, and SRE Registers as described in IEEE Standard 488.2–1992,
IEEE Standard Codes, Formats, Protocols, and Common Commands for Use with ANSI/IEEE Std
488.1–1987. New York, NY, 1992.

Questionable Register

Questionable Condition

This query returns the decimal value of the sum of the bits in the Questionable Condition register.

NOTE The data in this register is continuously updated and reflects the current conditions.

Questionable Enable

This command determines which bits in the Questionable Event register will set the Questionable Status
Summary bit (bit3) in the Status Byte Register. The variable <integer> is the sum of the decimal values
of the bits you want to enable.

NOTE The preset condition is all bits in this enable register set to 0. To have any
Questionable Events reported to the Status Byte Register, one or more bits need to
be set to 1. The Status Byte Event Register should be queried after each
measurement to check the Questionable Status Summary (bit 3). If it is equal to 1,
a condition during the test may have made the test results invalid. If it is equal to 0,
this indicates that no hardware problem or measurement problem was detected by
the analyzer.

Remote Command: :STATus:PRESet

Example: STAT:PRES

Initial S/W Revision: Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:CONDition?

Example STAT:QUES:COND?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All
 47

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Event Query

This query returns the decimal value of the sum of the bits in the Questionable Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The data in this register is
latched until it is queried. Once queried, the register is cleared.

Questionable Negative Transition

This command determines which bits in the Questionable Condition register will set the corresponding
bit in the Questionable Event register when the condition register bit has a negative transition (1 to 0).
The variable <integer> is the sum of the decimal values of the bits that you want to enable.

Remote Command :STATus:QUEStionable:ENABle 16
 Sets the register so that temperature summary will be reported to the Status
Byte Register

:STATus:QUEStionable:ENABle?

Example STAT:OPER:PTR 1
Align Now operation beginning will be reported to the Status Byte Register.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable[:EVENt]?

Example STAT:QUES?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:NTRansition 16
Temperature summary ‘questionable cleared’ will be reported to the Status
Byte Register.

:STATus:QUEStionable:NTRansition?
 48

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Positive Transition

This command determines which bits in the Questionable Condition register will set the corresponding
bit in the Questionable Event register when the condition register bit has a positive transition (0 to 1).
The variable <integer> is the sum of the decimal values of the bits that you want to enable.

Questionable Calibration Register

Questionable Calibration Condition

This query returns the decimal value of the sum of the bits in the Questionable Calibration Condition
register.

NOTE The data in this register is continuously updated and reflects the current conditions.

Example STAT:QUES:NTR 16 Temperature summary ‘questionable cleared’ will be
reported to the Status Byte Register.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:PTRansition <integer>

:STATus:QUEStionable:PTRansition?

Example STAT:QUES:PTR 16 Temperature summary ‘questionable asserted’ will be
reported to the Status Byte Register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:CALibration:CONDition?

Example STAT:QUES:CAL:COND?
 49

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Calibration Enable

This command determines which bits in the Questionable Calibration Condition Register will set bits in
the Questionable Calibration Event register, which also sets the Calibration Summary bit (bit 8) in the
Questionable Register. The variable <integer> is the sum of the decimal values of the bits you want to
enable.

Questionable Calibration Event Query

This query returns the decimal value of the sum of the bits in the Questionable Calibration Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The data in this register is
latched until it is queried. Once queried, the register is cleared.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:CALibration:ENABle <integer>

:STATus:QUEStionable:CALibration:ENABle?

Example STAT:QUES:CAL:ENAB 16384 Can be used to query if an alignment is
needed, if you have turned off the automatic alignment process.

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:CALibration[:EVENt]?

Example STAT:QUES:CAL?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00
 50

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Calibration Negative Transition

This command determines which bits in the Questionable Calibration Condition register will set the
corresponding bit in the Questionable Calibration Event register when the condition register bit has a
negative transition (1 to 0). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Questionable Calibration Positive Transition

This command determines which bits in the Questionable Calibration Condition register will set the
corresponding bit in the Questionable Calibration Event register when the condition register bit has a
positive transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Mode All

Remote Command :STATus:QUEStionable:CALibration:NTRansition <integer>

:STATus:QUEStionable:CALibration:NTRansition?

Example STAT:QUES:CAL:NTR 16384 Alignment is not required.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:CALibration:PTRansition <integer>

:STATus:QUEStionable:CALibration:PTRansition?

Example STAT:QUES:CAL:PTR 16384 Alignment is required.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 51

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Calibration Skipped Register

Questionable Calibration Skipped Condition

This query returns the decimal value of the sum of the bits in the Questionable Calibration Skipped
Condition register.

NOTE The data in this register is continuously updated and reflects the current conditions.

Questionable Calibration Skipped Enable

This command determines which bits in the Questionable Calibration Skipped Condition Register will
set bits in the Questionable Calibration Skipped Event register, which also sets bit 11 of the Questionable
Calibration Register. The variable <integer> is the sum of the decimal values of the bits you want to
enable.

Mode All

Remote Command :STATus:QUEStionable:CALibration:SKIPped:CONDition?

Example STAT:QUES:CAL:SKIP:COND?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:CALibration:SKIPped:ENABle
<integer>

:STATus:QUEStionable:CALibration:SKIPped:ENABle?

Example STAT:QUES:CAL:SKIP:ENAB 1 Can be used to query if an EMI alignment
skipped condition is detected

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 52

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Calibration Skipped Event Query

This query returns the decimal value of the sum of the bits in the Questionable Calibration Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The data in this register is
latched until it is queried. Once queried, the register is cleared.

Questionable Calibration Skipped Negative Transition

This command determines which bits in the Questionable Calibration Skipped Condition register will set
the corresponding bit in the Questionable Calibration Skipped Event register when the condition register
bit has a negative transition (1 to 0). The variable <integer> is the sum of the decimal values of the bits
that you want to enable.

Mode All

Remote Command :STATus:QUEStionable:CALibration:SKIPped[:EVENt]?

Example STAT:QUES:CAL:SKIP?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:CALibration:SKIPped:NTRansition
<integer>

:STATus:QUEStionable:CALibration:SKIPped:NTRansition?

Example STAT:QUES:CAL:SKIP:NTR 1 Align RF skipped is not required.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 53

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Calibration Skipped Positive Transition

This command determines which bits in the Questionable Calibration Skipped Condition register will set
the corresponding bit in the Questionable Calibration Skipped Event register when the condition register
bit has a positive transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits
that you want to enable.

Questionable Calibration Extended Failure Register

Questionable Calibration Extended Failure Condition

This query returns the decimal value of the sum of the bits in the Questionable Calibration Extended
Failure Condition register.

NOTE The data in this register is continuously updated and reflects the current conditions.

Mode All

Remote Command :STATus:QUEStionable:CALibration:SKIPped:PTRansition
<integer>

:STATus:QUEStionable:CALibration:SKIPped:PTRansition?

Example STAT:QUES:CAL:SKIP:PTR 1 Align RF skipped is required.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:CALibration:EXTended:FAILure:CONDi
tion?

Example STAT:QUES:CAL:EXT:FAIL:COND?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00
 54

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Calibration Extended Failure Enable

This command determines which bits in the Questionable Calibration Extended Failure Condition
Register will set bits in the Questionable Calibration Extended Failure Event register, which also sets bit
9 of the Questionable Calibration Register. The variable <integer> is the sum of the decimal values of the
bits you want to enable.

Questionable Calibration Extended Failure Event Query

This query returns the decimal value of the sum of the bits in the Questionable Calibration Extended
Failure Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The data in this register is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus:QUEStionable:CALibration:EXTended:FAILure:ENABl
e <integer>

:STATus:QUEStionable:CALibration:EXTended:FAILure:ENABl
e?

Example STAT:QUES:CAL:EXT:FAIL:ENAB 1 Can be used to query if an EMI
conducted alignment is needed.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:CALibration:EXTended:FAILure[:EVEN
t]?

Example STAT:QUES:CAL:EXT:FAIL?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00
 55

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Calibration Extended Failure Negative Transition

This command determines which bits in the Questionable Calibration Extended Failure Condition
register will set the corresponding bit in the Questionable Calibration Extended Failure Event register
when the condition register bit has a negative transition (1 to 0). The variable <integer> is the sum of the
decimal values of the bits that you want to enable.

Questionable Calibration Extended Failure Positive Transition

This command determines which bits in the Questionable Calibration Extended Failure Condition
register will set the corresponding bit in the Questionable Calibration Extended Failure Event register
when the condition register bit has a positive transition (0 to 1). The variable <integer> is the sum of the
decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus:QUEStionable:CALibration:EXTended:FAILure:NTRan
sition <integer>

:STATus:QUEStionable:CALibration:EXTended:FAILure:NTRan
sition?

Example STAT:QUES:CAL:EXT:FAIL:NTR 1 EMI conducted align failure is not
required.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:CALibration:EXTended:FAILure:PTRan
sition <integer>

:STATus:QUEStionable:CALibration:EXTended:FAILure:PTRan
sition?

Example STAT:QUES:CAL:EXT:FAIL:PTR 1 EMI conducted align failure is required.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 56

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Calibration Extended Needed Register

Questionable Calibration Extended Needed Condition

This query returns the decimal value of the sum of the bits in the Questionable Calibration Extended
Needed Condition register.

NOTE The data in this register is continuously updated and reflects the current conditions.

Questionable Calibration Extended Needed Enable

This command determines which bits in the Questionable Calibration Extended Needed Condition
Register will set bits in the Questionable Calibration Extended Needed Event register, which also sets bit
14 of the Questionable Calibration Register. The variable <integer> is the sum of the decimal values of
the bits you want to enable.

Mode All

Remote Command :STATus:QUEStionable:CALibration:EXTended:NEEDed:CONDit
ion?

Example STAT:QUES:CAL:EXT:NEED:COND?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:CALibration:EXTended:NEEDed:ENABle
<integer>

:STATus:QUEStionable:CALibration:EXTended:NEEDed:ENABle
?

Example STAT:QUES:CAL:EXT:NEED:ENAB 2 Can be used to query if an EMI
conducted alignment is needed.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 57

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Calibration Extended Needed Event Query

This query returns the decimal value of the sum of the bits in the Questionable Calibration Extended
Needed Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The data in this register is
latched until it is queried. Once queried, the register is cleared.

Questionable Calibration Extended Needed Negative Transition

This command determines which bits in the Questionable Calibration Extended Needed Condition
register will set the corresponding bit in the Questionable Calibration Extended Needed Event register
when the condition register bit has a negative transition (1 to 0). The variable <integer> is the sum of the
decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus:QUEStionable:CALibration:EXTended:NEEDed[:EVENt
]?

Example STAT:QUES:CAL:EXT:NEED?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:CALibration:EXTended:NEEDed:NTRans
ition <integer>

:STATus:QUEStionable:CALibration:EXTended:NEEDed:NTRans
ition?

Example STAT:QUES:CAL:EXT:NEED:NTR 2 Align EMI conducted is not required.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 58

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Calibration Extended Needed Positive Transition

This command determines which bits in the Questionable Calibration Extended Needed Condition
register will set the corresponding bit in the Questionable Calibration Extended Needed Event register
when the condition register bit has a positive transition (0 to 1). The variable <integer> is the sum of the
decimal values of the bits that you want to enable.

Questionable Frequency Register

Questionable Frequency Condition

This query returns the decimal value of the sum of the bits in the Questionable Frequency Condition
register.

NOTE The data in this register is continuously updated and reflects the current conditions.

Mode All

Remote Command :STATus:QUEStionable:CALibration:EXTended:NEEDed:PTRans
ition <integer>

:STATus:QUEStionable:CALibration:EXTended:NEEDed:PTRans
ition?

Example STAT:QUES:CAL:EXT:NEED:PTR 2 Align EMI conducted is required.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:FREQuency:CONDition?

Example STAT:QUES:FREQ:COND?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00
 59

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Frequency Enable

This command determines which bits in the Questionable Frequency Condition Register will set bits in
the Questionable Frequency Event register, which also sets the Frequency Summary bit (bit 5) in the
Questionable Register. The variable <integer> is the sum of the decimal values of the bits you want to
enable.

Questionable Frequency Event Query

This query returns the decimal value of the sum of the bits in the Questionable Frequency Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The data in this register is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus:QUEStionable:FREQuency:ENABle <integer>

:STATus:QUEStionable:FREQuency:ENABle?

Example STAT:QUES:FREQ:ENAB 2 Frequency Reference Unlocked will be reported
to the Frequency Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:FREQuency[:EVENt]?

Example STAT:QUES:FREQ?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00
 60

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Frequency Negative Transition

This command determines which bits in the Questionable Frequency Condition register will set the
corresponding bit in the Questionable Frequency Event register when the condition register bit has a
negative transition (1 to 0). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Questionable Frequency Positive Transition

This command determines which bits in the Questionable Frequency Condition register will set the
corresponding bit in the Questionable Frequency Event register when the condition register bit has a
positive transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Mode All

Remote Command :STATus:QUEStionable:FREQuency:NTRansition <integer>

:STATus:QUEStionable:FREQuency:NTRansition?

Example STAT:QUES:FREQ:NTR 2 Frequency Reference ‘regained lock’ will be
reported to the Frequency Summary of the Status Questionable register.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:FREQuency:PTRansition <integer>

:STATus:QUEStionable:FREQuency:PTRansition?

Example STAT:QUES:FREQ:PTR 2 Frequency Reference ‘became unlocked’ will be
reported to the Frequency Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 61

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Integrity Register

Questionable Integrity Condition

This query returns the decimal value of the sum of the bits in the Questionable Integrity Condition
register.

NOTE The data in this register is continuously updated and reflects the current conditions.

Questionable Integrity Enable

This command determines which bits in the Questionable Integrity Condition Register will set bits in the
Questionable Integrity Event register, which also sets the Integrity Summary bit (bit 9) in the
Questionable Register. The variable <integer> is the sum of the decimal values of the bits you want to
enable.

Mode All

Remote Command :STATus:QUEStionable:INTegrity:CONDition?

Example STAT:QUES:INT:COND?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:INTegrity:ENABle <integer>

:STATus:QUEStionable:INTegrity:ENABle?

Example STAT:QUES:INT:ENAB 8 Measurement Uncalibrated Summary will be
reported to the Integrity Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 62

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Integrity Event Query

This query returns the decimal value of the sum of the bits in the Questionable Integrity Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The data in this register is
latched until it is queried. Once queried, the register is cleared.

Questionable Integrity Negative Transition

This command determines which bits in the Questionable Integrity Condition register will set the
corresponding bit in the Questionable Integrity Event register when the condition register bit has a
negative transition (1 to 0)
The variable <integer> is the sum of the decimal values of the bits that you want to enable.

Mode All

Remote Command :STATus:QUEStionable:INTegrity[:EVENt]?

Example STAT:QUES:INT?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:INTegrity:NTRansition <integer>

:STATus:QUEStionable:INTegrity:NTRansition?

Example STAT:QUES:INT:NTR 8 Measurement ‘regained calibration’ Summary will
be reported to the Integrity Summary of the Status Questionable register.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 63

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Integrity Positive Transition

This command determines which bits in the Questionable Integrity Condition register will set the
corresponding bit in the Questionable Integrity Event register when the condition register bit has a
positive transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Questionable Integrity Signal Register

Questionable Integrity Signal Condition

This query returns the decimal value of the sum of the bits in the Questionable Integrity Signal Condition
register.

NOTE The data in this register is continuously updated and reflects the current conditions.

Mode All

Remote Command :STATus:QUEStionable:INTegrity:PTRansition <integer>

:STATus:QUEStionable:INTegrity:PTRansition?

Example STAT:QUES:INT:PTR 8 Measurement ‘became uncalibrated’ Summary will
be reported to the Integrity Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:INTegrity:SIGNal:CONDition?

Example STAT:QUES:INT:SIGN:COND?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00
 64

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Integrity Signal Enable

This command determines which bits in the Questionable Integrity Signal Condition Register will set
bits in the Questionable Integrity Signal Event register, which also sets the Integrity Summary bit (bit 9)
in the Questionable Register. The variable <integer> is the sum of the decimal values of the bits you
want to enable.

Questionable Integrity Signal Event Query

This query returns the decimal value of the sum of the bits in the Questionable Integrity Signal Event
register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The data in this register is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus:QUEStionable:INTegrity:SIGNal:ENABle <integer>

:STATus:QUEStionable:INTegrity:SIGNal:ENABle?

Example STAT:QUES:INT:SIGN:ENAB 4 Burst Not Found will be reported to the
Integrity Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:INTegrity:SIGNal[:EVENt]?

Example STAT:QUES:INT:SIGN?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00
 65

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Integrity Signal Negative Transition

This command determines which bits in the Questionable Integrity Signal Condition register will set the
corresponding bit in the Questionable Integrity Signal Event register when the condition register bit has
a negative transition (1 to 0). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Questionable Integrity Signal Positive Transition

This command determines which bits in the Questionable Integrity Signal Condition register will set the
corresponding bit in the Questionable Integrity Signal Event register when the condition register bit has
a positive transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Mode All

Remote Command :STATus:QUEStionable:INTegrity:SIGNal:NTRansition
<integer>

:STATus:QUEStionable:INTegrity:SIGNal:NTRansition?

Example STAT:QUES:INT:SIGN:NTR 4 Burst found will be reported to the Integrity
Summary of the Status Questionable register.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:INTegrity:SIGNal:PTRansition
<integer>

:STATus:QUEStionable:INTegrity:SIGNal:PTRansition?

Example STAT:QUES:INT:SIGN:PTR 4 Burst not found will be reported to the
Integrity Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 66

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Integrity Uncalibrated Register

Questionable Integrity Uncalibrated Condition

This query returns the decimal value of the sum of the bits in the Questionable Integrity Uncalibrated
Condition register.

NOTE The data in this register is continuously updated and reflects the current conditions.

Questionable Integrity Uncalibrated Enable

This command determines which bits in the Questionable Integrity Uncalibrated Condition Register will
set bits in the Questionable Integrity Uncalibrated Event register, which also sets the Data Uncalibrated
Summary bit (bit 3) in the Questionable Integrity Register. The variable <integer> is the sum of the
decimal values of the bits you want to enable.

Mode All

Remote Command :STATus:QUEStionable:INTegrity:UNCalibrated:CONDition?

Example STAT:QUES:INT:UNC:COND?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:INTegrity:UNCalibrated:ENABle

:STATus:QUEStionable:INTegrity:UNCalibrated:ENABle?

Example STAT:QUES:INT:UNC:ENAB 1 Oversweep (Meas Uncal) will be reported to
the Integrity Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 67

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Integrity Uncalibrated Event Query

This query returns the decimal value of the sum of the bits in the Questionable Integrity Uncalibrated
Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The data in this register is
latched until it is queried. Once queried, the register is cleared.

Questionable Integrity Uncalibrated Negative Transition

This command determines which bits in the Questionable Integrity Uncalibrated Condition register will
set the corresponding bit in the Questionable Integrity Uncalibrated Event register when the condition
register bit has a negative transition (1 to 0). The variable <integer> is the sum of the decimal values of
the bits that you want to enable.

Mode All

Remote Command :STATus:QUEStionable:INTegrity:UNCalibrated[:EVENt]?

Example STAT:QUES:INT:UNC?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:INTegrity:UNCalibrated:NTRansition
<integer>

:STATus:QUEStionable:INTegrity:UNCalibrated:NTRansition
?

Example STAT:QUES:INT:UNC:NTR 1 Oversweep cleared will be reported to the
Integrity Summary of the Status Questionable register.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 68

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Integrity Uncalibrated Positive Transition

This command determines which bits in the Questionable Integrity Uncalibrated Condition register will
set the corresponding bit in the Questionable Integrity Uncalibrated Event register when the condition
register bit has a positive transition (0 to 1). The variable <integer> is the sum of the decimal values of
the bits that you want to enable.

Questionable Power Register

Questionable Power Condition

This query returns the decimal value of the sum of the bits in the Questionable Power Condition register.

NOTE The data in this register is continuously updated and reflects the current conditions.

Mode All

Remote Command :STATus:QUEStionable:INTegrity:UNCalibrated:PTRansition
<integer>

:STATus:QUEStionable:INTegrity:UNCalibrated:PTRansition
?

Example STAT:QUES:INT:UNC:PTR 1 Oversweep (Meas Uncal) occurred will be
reported to the Integrity Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:POWer:CONDition?

Example STAT:QUES:POW:COND?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00
 69

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Power Enable

This command determines which bits in the Questionable Power Condition Register will set bits in the
Questionable Power Event register, which also sets the Power Summary bit (bit 3) in the Questionable
Register. The variable <integer> is the sum of the decimal values of the bits you want to enable.

Questionable Power Event Query

This query returns the decimal value of the sum of the bits in the Questionable Power Event register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The data in this register is
latched until it is queried. Once queried, the register is cleared.

Mode All

Remote Command :STATus:QUEStionable:POWer:ENABle <integer>

:STATus:QUEStionable:POWer:ENABle?

Example STAT:QUES:POW:ENAB 32 50 MHz Input Pwr too High for Cal will be
reported to the Power Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:POWer[:EVENt]?

Example STAT:QUES:POW?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00
 70

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Power Negative Transition

This command determines which bits in the Questionable Power Condition register will set the
corresponding bit in the Questionable Power Event register when the condition register bit has a negative
transition (1 to 0). The variable <integer> is the sum of the decimal values of the bits that you want to
enable.

Questionable Power Positive Transition

This command determines which bits in the Questionable Power Condition register will set the
corresponding bit in the Questionable Power Event register when the condition register bit has a positive
transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits that you want to
enable.

Mode All

Remote Command :STATus:QUEStionable:POWer:NTRansition <integer>

:STATus:QUEStionable:POWer:NTRansition?

Example STAT:QUES:POW:NTR 32 50 MHz Input Power became OK for Cal will be
reported to the Power Summary of the Status Questionable register.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:POWer:PTRansition <integer>

:STATus:QUEStionable:POWer:PTRansition?>

Example STAT:QUES:POW:PTR 32 50 MHz Input Power became too high for Cal will
be reported to the Power Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 71

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Temperature Register

Questionable Temperature Condition

This query returns the decimal value of the sum of the bits in the Questionable Temperature Condition
register.

NOTE The data in this register is continuously updated and reflects the current conditions.

Questionable Temperature Enable

This command determines which bits in the Questionable Temperature Condition Register will set bits in
the Questionable Temperature Event register, which also sets the Temperature Summary bit (bit 4) in the
Questionable Register. The variable <integer> is the sum of the decimal values of the bits you want to
enable.

Mode All

Remote Command :STATus:QUEStionable:TEMPerature:CONDition?

Example STAT:QUES:TEMP:COND?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:TEMPerature:ENABle <integer>

:STATus:QUEStionable:TEMPerature:ENABle?

Example STAT:QUES:TEMP:ENAB 1 Reference Oscillator Oven Cold will be
reported to the Temperature Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 72

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Temperature Event Query

This query returns the decimal value of the sum of the bits in the Questionable Temperature Event
register.

NOTE The register requires that the associated PTR or NTR filters be set before a
condition register bit can set a bit in the event register. The data in this register is
latched until it is queried. Once queried, the register is cleared

Questionable Temperature Negative Transition

This command determines which bits in the Questionable Temperature Condition register will set the
corresponding bit in the Questionable Temperature Event register when the condition register bit has a
negative transition (1 to 0). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Mode All

Remote Command :STATus:QUEStionable:TEMPerature[:EVENt]?

Example STAT:QUES:TEMP?

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Initial S/W Revision Prior to A.02.00

Mode All

Remote Command :STATus:QUEStionable:TEMPerature:NTRansition <integer>

:STATus:QUEStionable:TEMPerature:NTRansition?

Example STAT:QUES:TEMP:NTR 1 Reference Oscillator Oven not cold will be
reported to the Temperature Summary of the Status Questionable register.

Preset 0

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 73

Introduction to Programming X-Series Applications
STATus Subsystem (No equivalent front-panel keys)
Questionable Temperature Positive Transition

This command determines which bits in the Questionable Temperature Condition register will set the
corresponding bit in the Questionable Temperature Event register when the condition register bit has a
positive transition (0 to 1). The variable <integer> is the sum of the decimal values of the bits that you
want to enable.

Mode All

Remote Command :STATus:QUEStionable:TEMPerature:PTRansition <integer>

:STATus:QUEStionable:TEMPerature:PTRansition?

Example STAT:QUES:TEMP:PTR 1 Reference Oscillator Oven became cold will be
reported to the Temperature Summary of the Status Questionable register.

Preset 32767

SCPI Status Bits/OPC
Dependencies

Sequential command

Min 0

Max 32767

Initial S/W Revision Prior to A.02.00
 74

2 Programming Fundamentals
This chapter provides overall information on programming X-Series analyzers using SCPI and C
languages. Sections include:

• “SCPI Language Basics” on page 76

• “Improving Measurement Speed” on page 83

• “Programming in C Using the VTL” on page 89

• “For More Information” on page 97
75

Programming Fundamentals
SCPI Language Basics
SCPI Language Basics
This section is not intended to teach you everything about the SCPI (Standard Commands for
Programmable Instruments) programming language. The SCPI Consortium or IEEE can provide that
level of detailed information. For more information refer to the websites for the IEEE Standard 488.1
(IEEE Standard Digital Interface for Programmable Instrumentation).

Topics covered in this section include:

• “Creating Valid Commands” on page 77

• “Command Keywords and Syntax” on page 76

• “Special Characters in Commands” on page 78

• “Parameters in Commands” on page 78

• “Putting Multiple Commands on the Same Line” on page 81

Command Keywords and Syntax

A typical command is made up of keywords set off by colons. The keywords are followed by parameters
that can be followed by optional units.

Example: SENSe:FREQuency:STARt 1.5 MHZ

The instrument does not distinguish between upper and lower case letters. In the documentation, upper
case letters indicate the short form of the keyword. The lower case letters, indicate the long form of the
keyword. Either form may be used in the command.

Example: Sens:Freq:Star 1.5 mhz

is the same as SENSE:FREQ:start 1.5 MHz

NOTE The command SENS:FREQU:STAR would not be valid because FREQU is neither
the short, nor the long form of the command. Only the short and long forms of the
keywords are allowed in valid commands.
 76

Programming Fundamentals
SCPI Language Basics
Creating Valid Commands

Commands are not case sensitive and there are often many different ways of writing a particular
command. These are examples of valid commands for a given command syntax:

Command Syntax Sample Valid Commands

[SENSe:]BANDwidth[:RESolution] <freq> The following sample commands are all identical. They
will all cause the same result.

• Sense:Band:Res 1700

• BANDWIDTH:RESOLUTION 1.7e3

• sens:band 1.7KHZ

• SENS:band 1.7E3Hz

• band 1.7kHz

• bandwidth:RES 1.7e3Hz

MEASure:SPECtrum[n]? • MEAS:SPEC?

• Meas:spec?

• meas:spec3?

The number 3 in the last meas example causes it to
return different results then the commands above it. See
the command description for more information.

[:SENSe]:DETector[:FUNCtion]
NEGative|POSitive|SAMPle

• DET:FUNC neg

• Detector:Func Pos

INITiate:CONTinuous ON|OFF|1|0 The sample commands below are identical.

• INIT:CONT ON

• init:continuous 1
 77

Programming Fundamentals
SCPI Language Basics
Special Characters in Commands

Parameters in Commands

There are four basic types of parameters: booleans, keywords, variables and arbitrary block program
data.

OFF|ON|0|1
(Boolean) This is a two state boolean-type parameter. The numeric value 0 is equivalent to OFF.

Any numeric value other than 0 is equivalent to ON. The numeric values of 0 or 1 are
commonly used in the command instead of OFF or ON. Queries of the parameter
always return a numeric value of 0 or 1.

keyword The keywords that are allowed for a particular command are defined in the command
syntax description.

Special
Character

Meaning Example

| A vertical stroke between parameters
indicates alternative choices. The effect
of the command is different depending
on which parameter is selected.

Command: TRIGger:SOURce
EXTernal|INTernal|LINE

The choices are external, internal, and line.
Ex: TRIG:SOURCE INT

is one possible command choice.

A vertical stroke between keywords
indicates identical effects exist for both
keywords. The command functions the
same for either keyword. Only one of
these keywords is used at a time.

Command:
SENSe:BANDwidth|BWIDth:OFFSet

Two identical commands are: Ex1:
SENSE:BWIDTH:OFFSET Ex2:
SENSE:BAND:OFFSET

[] keywords in square brackets are optional
when composing the command. These
implied keywords will be executed even
if they are omitted.

Command:
[SENSe:]BANDwidth[:RESolution]:AUTO

The following commands are all valid and have
identical effects:
Ex1: bandwidth:auto
Ex2: band:resolution:auto
Ex3: sense:bandwidth:auto

< > Angle brackets around a word, or words,
indicates they are not to be used literally
in the command. They represent the
needed item.

Command: SENS:FREQ <freq>

In this command example the word <freq> should
be replaced by an actual frequency.

Ex: SENS:FREQ 9.7MHz.

{ } Parameters in braces can optionally be
used in the command either not at all,
once, or several times.

Command: MEASure:BW <freq>{,level}

A valid command is:
meas:BW 6 MHz, 3dB, 60dB
 78

Programming Fundamentals
SCPI Language Basics
Units Numeric variables may include units. The valid units for a command depend on the
variable type being used. See the following variable descriptions. The indicated
default units will be used if no units are sent. Units can follow the numerical value
with, or without, a space.

Variable A variable can be entered in exponential format as well as standard numeric format.
The appropriate range of the variable and its optional units are defined in the
command description.

The following keywords may also be used in commands, but not all commands allow
keyword variables.

• DEFault - resets the parameter to its default value.

• UP - increments the parameter.

• DOWN - decrements the parameter.

• MINimum - sets the parameter to the smallest possible value.

• MAXimum - sets the parameter to the largest possible value.

The numeric value for the function’s MINimum, MAXimum, or DEFault can be
queried by adding the keyword to the command in its query form. The keyword must
be entered following the question mark.

Example query: SENSE:FREQ:CENTER? MAX

Variable Parameters

<integer> is an integer value with no units.

<real> Is a floating point number with no units.

<freq>
<bandwidth> Is a positive rational number followed by optional units. The default unit is Hertz.

Acceptable units include: Hz, kHz, MHz, GHz.

<time>
<seconds> Is a rational number followed by optional units. The default units are seconds.

Acceptable units include: ks, s, ms, μs, ns.

<voltage> Is a rational number followed by optional units. The default units are Volts.
Acceptable units include: V, mV, μV, nV

<current> Is a rational number followed by optional units. The default units are Amperes.
Acceptable units include: A, mA, μA, nA.

<power> Is a rational number followed by optional units. The default units are W. Acceptable
units include: kW, W, mW, μW, nW, pW.

<ampl> Is a rational number followed by optional units. The default units are dBm.
Acceptable units include: dBm, dBmV, dBμV.

<rel_power>
<rel_ampl> Is a positive rational number followed by optional units. The default units are dB.

Acceptable units include: dB.
 79

Programming Fundamentals
SCPI Language Basics
<percent> Is a rational number between 0 and 100. You can either use no units or use PCT.

<angle>
<degrees> Is a rational number followed by optional units. The default units are degrees.

Acceptable units include: DEG, RAD.

<string> Is a series of alpha numeric characters.

<bit_pattern> Specifies a series of bits rather than a numeric value. The bit series is the binary
representation of a numeric value. There are no units.

Bit patterns are most often specified as hexadecimal numbers, though octal, binary or
decimal numbers may also be used. In the SCPI language these numbers are specified
as:

• Hexadecimal, #Hdddd or #hdddd where ‘d’ represents a hexadecimal digit 0 to 9
and ‘a’ to ‘f’. So #h14 can be used instead of the decimal number 20.

• Octal, #Odddddd or #odddddd where ‘d’ represents an octal digit 0 to 7. So #o24
can be used instead of the decimal number 20.

• Binary, #Bdddddddddddddddd or #bdddddddddddddddd where ‘d’ represents a 1
or 0. So #b10100 can be used instead of the decimal number 20.

Block Program Data

Some parameters consist of a block of data. There are a few standard types of block data. Arbitrary
blocks of program data can also be used.

<trace> Is an array of rational numbers corresponding to displayed trace data. See
FORMat:DATA for information about available data formats.

A SCPI command often refers to a block of current trace data with a variable name
such as: Trace1, Trace2, or trace3, depending on which trace is being accessed.

<arbitrary block
data> Consists of a block of data bytes. The first information sent in the block is an ASCII

header beginning with #. The block is terminated with a semi-colon. The header can
be used to determine how many bytes are in the data block. There are no units. (You
will not get block data if your data type is ASCII, using FORMat:DATA ASCII
command. Your data will be comma separated ASCII values.

Block data example: suppose the header is #512320.

• The first digit in the header (5) tells you how many additional digits/bytes there are
in the header.

• The 12320 means 12 thousand, 3 hundred, 20 data bytes follow the header.

• Divide this number of bytes by your current data format (bytes/data point), either 8
(for real,64), or 4 (for real,32). For this example, if you’re using real64 then there
are 1540 points in the block.
 80

Programming Fundamentals
SCPI Language Basics
Putting Multiple Commands on the Same Line

Multiple commands can be written on the same line, reducing your code space requirement. To do this:

• Commands must be separated with a semicolon (;).

• If the commands are in different subsystems, the key word for the new subsystem must be preceded
by a colon (:).

• If the commands are in the same subsystem, the full hierarchy of the command key words need not be
included. The second command can start at the same key word level as the command that was just
executed.

SCPI Termination and Separator Syntax

All binary trace and response data is terminated with <NL><END>, as defined in Section 8.5 of IEEE
Standard 488.2-1992, IEEE Standard Codes, Formats, Protocols and Common Commands for Use with
ANSI/IEEE Std 488.1-1987. New York, NY, 1992. (Although one intent of SCPI is to be interface
independent, <END> is only defined for IEEE 488 operation.)

The following are some examples of good and bad commands. The examples are created from a
theoretical instrument with the simple set of commands indicated below:

[:SENSe]
 :POWer
 [:RF]
 :ATTenuation 40dB

:TRIGger
 [:SEQuence]
 :EXTernal [1]
 :SLOPe
 POSitive

[:SENSe]
 :FREQuency
 :STARt
 :POWer
 [:RF]
 :MIXer
 :RANGe
 [:UPPer]

Bad Command Good Command

PWR:ATT 40dB POW:ATT 40dB

The short form of POWER is POW, not PWR.

FREQ:STAR 30MHz;MIX:RANG -20dBm FREQ:STAR 30MHz;POW:MIX:RANG -20dBm

The MIX:RANG command is in the same :SENSE subsystem as FREQ, but executing the FREQ command puts
you back at the SENSE level. You must specify POW to get to the MIX:RANG command.

FREQ:STAR 30MHz;POW:MIX RANG -20dBm FREQ:STAR 30MHz;POW:MIX:RANG -20dBm
 81

Programming Fundamentals
SCPI Language Basics
MIX and RANG require a colon to separate them.

:POW:ATT 40dB;TRIG:FREQ:STAR 2.3GHz :POW:ATT 40dB;:FREQ:STAR 2.3GHz

:FREQ:STAR is in the :SENSE subsystem, not the :TRIGGER subsystem.

:POW:ATT?:FREQ:STAR? :POW:ATT?;:FREQ:STAR?

:POW and FREQ are within the same :SENSE subsystem, but they are two separate commands, so they should
be separated with a semicolon, not a colon.

:POW:ATT -5dB;:FREQ:STAR 10MHz :POW:ATT 5dB;:FREQ:STAR 10MHz

Attenuation cannot be a negative value.

Bad Command Good Command
 82

Programming Fundamentals
Improving Measurement Speed
Improving Measurement Speed
There are a number of things you can do in your programs to make them run faster:

“Turn off the display updates” on page 83

“Use binary data format instead of ASCII” on page 83

“Minimize the number of GPIB transactions” on page 84

“Consider using USB or LAN instead of GPIB” on page 84

“Minimize DUT/instrument setup changes” on page 85

“Avoid automatic attenuator setting” on page 85

“Avoid using RFBurst trigger for single burst signals” on page 85

“N9071A: Optimize your GSM output RF spectrum switching measurement” on page 86

“Making power measurements on multiple bursts or slots? Use CALCulate:DATA<n>:COMPress?”
on page 86

Turn off the display updates

:DISPlay:ENABle OFF turns off the display. That is, the data may still be visible, but it will no longer
be updated. Updating the display slows down the measurement. For remote testing, since the computer is
processing the data rather than a person, there is no need to display the data on the analyzer screen.

Use binary data format instead of ASCII

The ASCII data format is the instrument default since it is easier for people to understand and is required
by SCPI for *RST. However, data input/output is faster using the binary formats.

:FORMat:DATA REAL,64 selects the 64-bit binary data format for all your numerical data queries. You
may need to swap the byte order if you are using a PC rather than UNIX. NORMal is the default byte
order. Use :FORMat:BORDer SWAP to change the byte order so that the least significant byte is sent
first. (Real,32 which is smaller and somewhat faster, should only be used if you don’t need full
resolution for your data. Some frequency data may require full 64 bit resolution.)

When using the binary format, data is sent in a block of bytes with an ASCII header. A data query would
return the block of data in the following format: #DNNN<nnn binary data bytes>
 83

Programming Fundamentals
Improving Measurement Speed
To parse the data:

• Read two characters (#D), where D tells you how many N characters follow the D character.
• Read D characters, the resulting integer specifies the number of data bytes sent.
• Read the bytes into a real array.

For example, suppose the header is #512320.

• The first character/digit in the header (5) tells you how many additional digits there are in the header.
• The 12320 means 12 thousand, 3 hundred, 20 data bytes follow the header.
• Divide this number of bytes by your current data format (bytes/data point), 8 for real,64. For this

example, there are 1540 data points in the block of data.

Minimize the number of GPIB transactions

When you are using the GPIB for control of your instrument, each transaction requires driver overhead
and bus handshaking, so minimizing these transactions reduces the time used.

• You can reduce bus transactions by sending multiple commands per transaction. See the information
on “Putting Multiple Commands on the Same Line” in the SCPI Language Basics section.

• If you are making the same measurement multiple times with small changes in the measurement
setup, use the READ command. It is faster then using INITiate and FETCh.

• If you are changing the frequency and making a measurement repeatedly, you can reduce transactions
by sending the optional frequency parameter with your READ command.
(for example, READ:<meas>? {<freq>}) These optional parameters are not available in some
personality modes such as Spectrum Analysis or Phase Noise.

The CONFigure/MEASure/READ commands for measurements in the option Modes allow you to
send center frequency setup information along with the command. (for example, MEAS:PVT?
935.2MHz) This sets the power vs. time measurement to it’s defaults, then changes the center
frequency to 935.2 MHz, initiates a measurement, waits until it is complete and returns the
measurement data.

• If you are doing bottom/middle/top measurements on base stations, you can reduce transactions by
making a time slot active at each of the B,M,T frequencies. Then issue three measurements at once in
the programming code and retrieve three data sets with just one GPIB transaction pair (write, read).

For example, send READ:PFER? <Freq_bottom>;PFER? <Freq_middle>;PFER? <Freq_top> This
single transaction initiates three different phase and frequency error measurements at each of the
three different frequencies provided and returns the data. Then you read the three sets of data.

Consider using USB or LAN instead of GPIB

USB and LAN allow faster data input and output. This is especially important if you are moving large
blocks of data. You will not get this improved throughput using LAN if there is excessive LAN traffic
(that is, your test instrument is connected to a very busy enterprise LAN). You may want to use a private
LAN that is only for your test system.
 84

Programming Fundamentals
Improving Measurement Speed
Minimize DUT/instrument setup changes

• Some instrument setup parameters are common to multiple measurements. You should look at your
measurement process with an eye toward minimizing setup changes. If your test process involves
nested loops, make sure that the inner-most loop is the fastest. Also, check if the loops could be
nested in a different order to reduce the number of parameter changes as you step through the test.

• Are you are using the measurements under the Meas key? Remember that if you have already set
your Meas Setup parameters for a measurement, and you want to make another one of these
measurements later, use READ:<meas>?. The MEASure:<meas>?. command resets all the settings
to the defaults, while READ changes back to that measurement without changing the setup
parameters from the previous use.

• Are you are using the Measurements under the Meas key? Remember that Mode Setup parameters
remain constant across all the measurements in that mode (e.g. center/channel frequency, amplitude,
radio standard, input selection, trigger setup). You don’t have to re-initialize them each time you
change to a different measurement.

Avoid unnecessary use of *RST

Remember that while *RST does not change the current Mode, it presets all the measurements and
settings to their factory defaults. This forces you to reset your analyzer’s measurement settings even if
they use similar mode setup or measurement settings. See Minimize DUT/instrument setup changes
below. (Also note that *RST may put the instrument in single measurement/sweep for some modes.)

Avoid automatic attenuator setting

Many of the one-button measurements use an internal process for automatically setting the value of the
attenuator. It requires measuring an initial burst to identify the proper attenuator setting before the next
burst can be measured properly. If you know the amount of attenuation or the signal level needed for
your measurement, just set it.

Note that spurious types of measurements must be done with the attenuator set to automatic (for
measurements like: output RF spectrum, transmit spurs, adjacent channel power, spectrum emission
mask). These types of measurements start by tuning to the signal, then they tune away from it and must
be able to reset the attenuation value as needed.

Avoid using RFBurst trigger for single burst signals

RFBurst triggering works best when measuring signals with repetitive bursts. For a non-repetitive or
single burst signals, use the IF (video) trigger or external trigger, depending on what you have available.

RFBurst triggering depends on its establishment of a valid triggering reference level, based on previous
bursts. If you only have a single burst, the peak detection nature of this triggering function, may result in
the trigger being done at the wrong level/point generating incorrect data, or it may not trigger at all.

Are you making a single burst measurement?

To get consistent triggering and good data for this type of measurement application, you need to
synchronize the triggering of the DUT with the analyzer. You should use the analyzer’s internal status
system for this.
 85

Programming Fundamentals
Improving Measurement Speed
The first step in this process is to initialize the status register mask to look for the “waiting for trigger”
condition (bit 5). Use :STATus:OPERation:ENABle 32

Then, in the measurement loop:

1. :STATus:OPERation:EVENt? This query of the operation event register is to clear the current
register contents.

2. :READ:PVT? initiates a measurement (in this example, for GSM power versus time) using the
previous setup. The measurement will then be waiting for the trigger.

Make sure the attenuation is set manually. Do NOT use automatic attenuation as this requires an
additional burst to determine the proper attenuation level before the measurement can be made.

3. Create a small loop that will serial poll the instrument for a status byte value of binary 128. Then wait
1 msec (100 ms if the display is left on/enabled) before checking again, to keep the bus traffic down.
These two commands are repeated until the condition is set, so we know that the trigger is armed and
ready.

4. Trigger your DUT to send the burst.

5. Return the measurement data to your computer.

NOTE This process cannot be done by using with the current VXI plug-n-play driver
implementation. You will need to use the above SCPI commands.

N9071A: Optimize your GSM output RF spectrum switching measurement

For ORFS (switching), setting the break frequency to zero (0) puts the analyzer in a measurement setup
where it can use a direct time measurement algorithm, instead of an FFT-based algorithm. This non-FFT
approach is faster. (However, remember that your break frequency for ORFS (modulation)
measurements must be >400 kHz for valid measurements, so you will need to change the break
frequency if you are making both types of measurements.)

Making power measurements on multiple bursts or slots? Use
CALCulate:DATA<n>:COMPress?

The CALC:DATA:COMP? query is the fastest way to measure power data for multiple bursts/slots.
There are two reasons for this: 1. it can be used to measure data across multiple, consecutive slots/frames
with just one measurement, instead of a separate measurement on each slot, and 2. it can pre-process
and/or decimate the data so that you only return the information that you need which minimizes data
transfer to the computer.

For example: you want to do a power measurement for a GSM base station where you generate a
repeating frame with 8 different power levels. You can gather all the data with a single
CALC:DATA:COMP? acquisition, using the waveform measurement.

With CALC:DATA2:COMP? MEAN,9,197,1730 you can measure the mean power in those bursts. This
single command will measure the data across all 8 frames, locate the first slot/burst in each of the frames,
calculate the mean power of those bursts, then return the resulting 8 values.
 86

Programming Fundamentals
Improving Measurement Speed
Example:

To set up a GSM Waveform measurement:

• :CONF:WAV? turns on the waveform measurement
• :WAV:BAND 300khz sets a resolution bandwidth of 300 kHz
• :WAV:SWE:TIME 5ms sets a sweep time of 5 milliseconds
• :WAV:BAND:TYPE FLAT selects the flat filter type
• :WAV:DEC 4;DEC:STAT ON selects a decimation of 4 and turns on decimation. This reduces the

amount of data that needs to be sent since the instrument hardware decimates (throws some away).
• :INIT to initiate a measurement and acquire the data
• CALC:DATA2:COMP? MEAN,25us,526us,579.6us,8 to return the desired data

There are two versions of this command depending on your firmware revision. Earlier revisions require
the optional variables be entered in terms of their position in the trace data array. Current instruments
allow the variables to be entered in terms of time.

For early firmware revisions you need to know the sample interval. In the waveform measurement it is
equal to the aperture value. Query :WAVeform:APERture? to find the sample interval. (Note: the
WAV:APER? command always takes decimation into account.) The sample interval (aperture value) is
dependent on the settings for resolution bandwidth, filter type, and decimation. See the following table to
see how these value relate.

The parameters for this GSM example are:
MEAN,9,197,1730 (or with later firmware: MEAN,25us,526us,579.6us,8)

• MEAN calculates the mean of the measurement points indicated
• 9 is how many points you want to discard before you look at the data. This allows you to skip over

any “unsettled” values at the beginning of the burst. You can calculate this start offset by
(25μs/sampleInterval)l

• 197 is the length of the data you want to use. This would be the portion of the burst that you want to
find the mean power over. You can calculate this length by (526μs/sampleInterval)

• 1730 is how much data you have before you repeat the process. For this example it’s the time
between the start offset point on the burst in the first slot (first frame) to the same spot on the burst in
the first slot (second frame). You can calculate this by (576.9μs*N/sampleInterval) where N is the
number of data items that you want. In this case it is the number of slots in the frame, N=8.)

Table 2-1 GSM Parameters for 1 Slot/Frame Measurement Requirements

Resolution
Bandwidth

Filter Type Decimation Aperture Start Length Repeat

500 or 300 kHz Flat or
Gaussian

4 or 1 dependent on
settings

24 μsec 526 μsec 576.9 μsec

500 kHz Gaussian 1 0.2 μsec 124 2630 2884.6

500 kHz Gaussian 4 0.8 μsec 31 657 721.15

500 kHz Flat 1 0.4 μsec 61 1315 1442.3

500 kHz Flat 4 1.6 μsec 15 329 360.575

300 kHz Gaussian 1 0.2667 μsec 90 1972 2163.1
 87

Programming Fundamentals
Improving Measurement Speed
For More Information

For more information on optimizing measurement speed using X-Series analyzers see Agilent
Application Note 1583:

http://cp.literature.agilent.com/litweb/pdf/5989-4947EN.pdf

300 kHz Gaussian 4 1.07 μsec 22 492 539.16

300 kHz Flat 1 0.6667 μsec 36 789 865.31

300 kHz Flat 4 2.667 μsec 9 197 216.33

Table 2-1 GSM Parameters for 1 Slot/Frame Measurement Requirements

Resolution
Bandwidth

Filter Type Decimation Aperture Start Length Repeat
 88

http://cp.literature.agilent.com/litweb/pdf/5989-4947EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5989-4947EN.pdf

Programming Fundamentals
Programming in C Using the VTL
Programming in C Using the VTL
The programming examples that are provided are written using the C programming language and the
Agilent VTL (VISA transition library). This section includes some basic information about
programming in the C language. Note that some of this information may not be relevant to your
particular application. (For example, if you are not using VXI instruments, the VXI references will not
be relevant).

Refer to your C programming language documentation for more details. (This information is taken from
the manual “VISA Transition Library”, part number E2090-90026.) The following topics are included:

“Typical Example Program Contents” on page 89

“Linking to VTL Libraries” on page 90

“Compiling and Linking a VTL Program” on page 90

“Example Program” on page 92

“Including the VISA Declarations File” on page 92

“Opening a Session” on page 93

“Device Sessions” on page 93

“Addressing a Session” on page 95

“Closing a Session” on page 96

Typical Example Program Contents

The following is a summary of the VTL function calls used in the example programs.

visa.h This file is included at the beginning of the file to provide the function prototypes and
constants defined by VTL.

ViSession The ViSession is a VTL data type. Each object that will establish a communication
channel must be defined as ViSession.

viOpenDefaultRM You must first open a session with the default resource manager with the
viOpenDefaultRM function. This function will initialize the default resource
manager and return a pointer to that resource manager session.

viOpen This function establishes a communication channel with the device specified. A
session identifier that can be used with other VTL functions is returned. This call must
be made for each device you will be using.

viPrintf
viScanf These are the VTL formatted I/O functions that are patterned after those used in the C

programming language. The viPrintf call sends the IEEE 488.2 *RST command
to the instrument and puts it in a known state. The viPrintf call is used again to
query for the device identification (*IDN?). The viScanf call is then used to read
the results.
 89

Programming Fundamentals
Programming in C Using the VTL
viClose This function must be used to close each session. When you close a device session, all
data structures that had been allocated for the session will be de-allocated. When you
close the default manager session, all sessions opened using the default manager
session will be closed.

Linking to VTL Libraries

Your application must link to one of the VTL import libraries:

32-bit Version:

C:\VXIPNP\WIN95\LIB\MSC\VISA32.LIB for Microsoft compilers

C:\VXIPNP\WIN95\LIB\BC\VISA32.LIB for Borland compilers

16-bit Version:

C:\VXIPNP\WIN\LIB\MSC\VISA.LIB for Microsoft compilers

C:\VXIPNP\WIN\LIB\BC\VISA.LIB for Borland compilers

See the following section, “Compiling and Linking a VTL Program” for information on how to use the
VTL run-time libraries.

Compiling and Linking a VTL Program

32-bit Applications

The following is a summary of important compiler-specific considerations for several C/C++ compiler
products when developing WIN32 applications.

For Microsoft Visual C++ version 2.0 compilers:

• Select Project | Update All Dependencies from the menu.

• Select Project | Settings from the menu. Click on the C/C++ button. Select Code
Generation from the Use Run-Time Libraries list box. VTL requires these definitions for
WIN32. Click OK to close the dialog boxes.

• Select Project | Settings from the menu. Click on the Link button and add visa32.lib
to the Object / Library Modules list box. Optionally, you may add the library directly to
your project file. Click OK to close the dialog boxes.

• You may wish to add the include file and library file search paths. They are set by doing the
following:

1. Select Tools | Options from the menu.

2. Click Directories to set the include file path.

3. Select Include Files from the Show Directories For list box.

4. Click Add and type in the following: C:\VXIPNP\WIN95\INCLUDE

5. Select Library Files from the Show Directories For list box.
 90

Programming Fundamentals
Programming in C Using the VTL
6. Click Add and type in the following: C:\VXIPNP\WIN95\LIB\MSC

For Borland C++ version 4.0 compilers:

• You may wish to add the include file and library file search paths. They are set under the Options |
Project menu selection. Double-click on Directories from the Topics list box and add the
following:

C:\VXIPNP\WIN95\INCLUDE
C:\VXIPNP\WIN95\LIB\BC

16-bit Applications

The following is a summary of important compiler-specific considerations for the Windows compiler.

For Microsoft Visual C++ version 1.5:

• To set the memory model, do the following:

1. Select Options | Project.

2. Click Compiler, then select Memory Model from the Category list.

3. Click the Model list arrow to display the model options, and select Large.

4. Click OK to close the Compiler dialog box.

• You may wish to add the include file and library file search paths. They are set under the Options |
Directories menu selection:

C:\VXIPNP\WIN\INCLUDE
C:\VXIPNP\WIN\LIB\MSC

Otherwise, the library and include files should be explicitly specified in the project file.
 91

Programming Fundamentals
Programming in C Using the VTL
Example Program

This example program queries a GPIB device for an identification string and prints the results. Note that
you must change the address.

/*idn.c - program filename */

#include "visa.h"
#include <stdio.h>

void main ()
{

 /*Open session to GPIB device at address 18 */
 ViOpenDefaultRM (&defaultRM);
 ViOpen (defaultRM, GPIB0::18::INSTR", VI_NULL,
 VI_NULL, &vi);

 /*Initialize device */
 viPrintf (vi, "*RST\n");

 /*Send an *IDN? string to the device */
 printf (vi, "*IDN?\n");

 /*Read results */
 viScanf (vi, "%t", &buf);

 /*Print results */
 printf ("Instrument identification string: %s\n", buf);

 /* Close sessions */
 viClose (vi);
 viClose (defaultRM);
}

Including the VISA Declarations File

For C and C++ programs, you must include the visa.h header file at the beginning of every file that
contains VTL function calls:

#include “visa.h”

This header file contains the VISA function prototypes and the definitions for all VISA constants and
error codes. The visa.h header file includes the visatype.h header file.

The visatype.h header file defines most of the VISA types. The VISA types are used throughout VTL
to specify data types used in the functions. For example, the viOpenDefaultRM function requires a
pointer to a parameter of type ViSession. If you find ViSession in the visatype.h header file, you
will find that ViSession is eventually typed as an unsigned long.
 92

Programming Fundamentals
Programming in C Using the VTL
Opening a Session

A session is a channel of communication. Sessions must first be opened on the default resource manager,
and then for each device you will be using. The following is a summary of sessions that can be opened:

• A resource manager session is used to initialize the VISA system. It is a parent session that knows
about all the opened sessions. A resource manager session must be opened before any other session
can be opened.

• A device session is used to communicate with a device on an interface. A device session must be
opened for each device you will be using. When you use a device session you can communicate
without worrying about the type of interface to which it is connected. This insulation makes
applications more robust and portable across interfaces. Typically a device is an instrument, but could
be a computer, a plotter, or a printer.

NOTE All devices that you will be using need to be connected and in working condition
prior to the first VTL function call (viOpenDefaultRM). The system is
configured only on the first viOpenDefaultRM per process. Therefore, if
viOpenDefaultRM is called without devices connected and then called again
when devices are connected, the devices will not be recognized. You must close
ALL resource manager sessions and re-open with all devices connected and in
working condition.

Device Sessions

There are two parts to opening a communications session with a specific device. First you must open a
session to the default resource manager with the viOpenDefaultRM function. The first call to this
function initializes the default resource manager and returns a session to that resource manager session.
You only need to open the default manager session once. However, subsequent calls to
viOpenDefaultRM returns a session to a unique session to the same default resource manager
resource.

Next, you open a session with a specific device with the viOpen function. This function uses the session
returned from viOpenDefaultRM and returns its own session to identify the device session. The
following shows the function syntax:

viOpenDefaultRM (sesn);

viOpen (sesn, rsrcName, accessMode, timeout, vi);

The session returned from viOpenDefaultRM must be used in the sesn parameter of the viOpen
function. The viOpen function then uses that session and the device address specified in the rsrcName
parameter to open a device session. The vi parameter in viOpen returns a session identifier that can be
used with other VTL functions.

Your program may have several sessions open at the same time by creating multiple session identifiers
by calling the viOpen function multiple times.
 93

Programming Fundamentals
Programming in C Using the VTL
The following summarizes the parameters in the previous function calls:

sesn This is a session returned from the viOpenDefaultRM function that identifies the
resource manager session.

rsrcName This is a unique symbolic name of the device (device address).

accessMode This parameter is not used for VTL. Use VI_NULL.

timeout This parameter is not used for VTL. Use VI_NULL.

vi This is a pointer to the session identifier for this particular device session. This pointer
will be used to identify this device session when using other VTL functions.

The following is an example of opening sessions with a GPIB multimeter and a GPIB-VXI scanner:

ViSession defaultRM, dmm, scanner;
.
.
viOpenDefaultRM(&defaultRM);
viOpen (defaultRM, "GPIB0::22::INSTR", VI_NULL,
 VI_NULL, &dmm);
viOpen (defaultRM, "GPIB-VXI0::24::INSTR", VI_NULL,
 VI_NULL, &scanner);
.
.
viClose (scanner);
viClose (dmm);
viClose(defaultRM);

The above function first opens a session with the default resource manager. The session returned from
the resource manager and a device address is then used to open a session with the GPIB device at address
22. That session will now be identified as dmm when using other VTL functions. The session returned
from the resource manager is then used again with another device address to open a session with the
GPIB-VXI device at primary address 9 and VXI logical address 24. That session will now be identified
as scanner when using other VTL functions. See the following section for information on addressing
particular devices.
 94

Programming Fundamentals
Programming in C Using the VTL
Addressing a Session

As seen in the previous section, the rsrcName parameter in the viOpen function is used to identify a
specific device. This parameter is made up of the VTL interface name and the device address. The
interface name is determined when you run the VTL Configuration Utility. This name is usually the
interface type followed by a number. The following table illustrates the format of the rsrcName for the
different interface types

The following describes the parameters used above:

board This optional parameter is used if you have more than one interface of the same type.
The default value for board is 0.

VSI logical
address This is the logical address of the VXI instrument.

primary
address This is the primary address of the GPIB device.

secondary
address This optional parameter is the secondary address of the GPIB device. If no secondary

address is specified, none is assumed.

INSTR This is an optional parameter that indicates that you are communicating with a
resource that is of type INSTR, meaning instrument.

NOTE If you want to be compatible with future releases of VTL and VISA, you must
include the INSTR parameter in the syntax.

The following are examples of valid symbolic names:

XI0::24::INSTR Device at VXI logical address 24 that is of VISA type INSTR.

VXI2::128 Device at VXI logical address 128, in the third VXI system (VXI2).

GPIB-VXI0::24 A VXI device at logical address 24. This VXI device is connected via a GPIB-VXI
command module.

GPIB0::7::0 A GPIB device at primary address 7 and secondary address 0 on the GPIB interface.

Interface Syntax

VXI VXI [board]::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI [board]::VXI logical address[::INSTR]

GPIB GPIB [board]::primary address[::secondary address][::INSTR]
 95

Programming Fundamentals
Programming in C Using the VTL
The following is an example of opening a device session with the GPIB device at primary address23.

ViSession defaultRM, vi;

.

.

viOpenDefaultRM (&defaultRM);

viOpen (defaultRM, "GPIB0::23::INSTR", VI_NULL,VI_NULL,&vi);

.

.

viClose(vi);

viClose (defaultRM);

Closing a Session

The viClose function must be used to close each session. You can close the specific device session,
which will free all data structures that had been allocated for the session. If you close the default resource
manager session, all sessions opened using that resource manager will be closed.

Since system resources are also used when searching for resources (viFindRsrc) or waiting for events
(viWaitOnEvent), the viClose function needs to be called to free up find lists and event contexts.
 96

Programming Fundamentals
For More Information
For More Information
The Agilent Developer Network (ADN) website is a repository of information and services for those
who develop test systems. ADN is useful for T&M engineers connecting instruments to computers who
use Microsoft® Windows®-based applications and application development environments.

http://www.agilent.com/find/adn

The Agilent X-Series websites have many topics under the Technical Support tab, including Application
Notes:

http://www.agilent.com/find/pxa

http://www.agilent.com/find/mxa

http://www.agilent.com/find/exa

http://www.agilent.com/find/cxa
 97

http://www.agilent.com/find/adn
http://www.agilent.com/find/pxa
http://www.agilent.com/find/pxa
http://www.agilent.com/find/mxa
http://www.agilent.com/find/cxa
http://www.agilent.com/find/mxa
http://www.agilent.com/find/exa

Programming Fundamentals
For More Information
 98

3 Programming Examples
• The programming examples were written for use on an IBM compatible PC.

• The programming examples use C, Visual Basic, or VEE programming languages.

• The programming examples use VISA interfaces (GPIB, LAN, or USB).

• Some of the examples use the IVI-COM drivers.

Interchangeable Virtual Instruments COM (IVI-COM) drivers: Develop system automation
software easily and quickly. IVI-COM drivers take full advantage of application development
environments such as Visual Studio using Visual Basic, C# or Visual C++ as well as Agilent's Test
and Measurement Toolkit. You can now develop application programs that are portable across
computer platforms and I/O interfaces. With IVI-COM drivers you do not need to have in depth test
instrument knowledge to develop sophisticated measurement software. IVI-COM drivers provide a
compatible interface to all. COM environments. The IVI-COM software drivers can be found at the
URL:
http://www.agilent.com/find/ivi-com

• Most of the examples are written in C, Visual Basic, VEE, or LabVIew using the Agilent VISA
transition library.

The Agilent I/O Libraries Suite must be installed and the GPIB card, USB to GPIB interface, or Lan
interface USB interface configured. The latest Agilent I/O Libraries Suite is available:
www.agilent.com/find/iolib

• The STATus subsystem of commands is used to monitor and query hardware status. These hardware
registers monitor various events and conditions in the instrument. Details about the use of these
commands and registers can be found in the manual/help in the Utility Functions section on the
STATus subsystem.

Visual Basic is a registered trademark of Microsoft Corporation.
99

http://www.agilent.com/find/ivi-com
http://www.agilent.com/find/ivi-com
www.agilent.com/find/iolib

Programming Examples
X-Series Spectrum Analyzer Mode Programing Examples
X-Series Spectrum Analyzer Mode Programing
Examples

The following examples work with Spectrum Analyzer mode. These examples use one of the following
programming languages: Visual Basic® 6, Visual Basic.NET®, MS Excel®, C++, ANSI C, C#.NET, and
Agilent VEE Pro.

These examples are available in either the “progexamples” directory on the Agilent Technologies
Spectrum Analyzer documentation CD-ROM or the “progexamples” directory in the analyzer. The
file names for each example is listed at the end of the example description. The examples can also be
found on the Agilent Technologies, Inc. web site at URL:

 http://www.agilent.com/find/sa_programming

NOTE These examples have all been tested and validated as functional in the Spectrum
Analyzer mode. They have not been tested in all other modes. However, they
should work in all other modes except where exceptions are noted.

Programming using Visual Basic® 6, Visual Basic.NET® and MS Excel®:

• Transfer Screen Images from your Spectrum Analyzer using Visual Basic 6

This example program stores the current screen image on the instrument flash memory as
“D:\PICTURE.PNG”. It then transfers the image over GPIB or LAN and stores the image on your
PC in the current directory as “PICTURE.PNG”. The file “D:\PICTURE.PNG” is then deleted on the
instrument flash memory.

File name: _screen.bas

• Binary Block Trace data transfer from your Spectrum Analyzer using Visual Basic 6

This example program queries the IDN string from the instrument and then reads the trace data in
Spectrum Analysis mode in binary format (Real,32 or Real,64 or Int,32). The data is then stored to a
file “bintrace.txt”. This data transfer method is faster than the default ASCII transfer mode,
because less data is sent over the bus.

File name: bintrace.bas
 100

http://www.agilent.com/find/sa_programming

Programming Examples
X-Series Spectrum Analyzer Mode Programing Examples
Programming using C++, ANSI C and C#.NET:

• Serial Poll for Sweep Complete using C++

This example demonstrates how to:

1. Perform an instrument sweep.
2. Poll the instrument to determine when the operation is complete.
3. Perform an instrument sweep.

File name: _Sweep.c

• Service Request Method (SRQ) determines when a measurement is done by waiting for SRQ and
reading Status Register using C++.

This example demonstrates how:

1. Set the service request mask to assert SRQ when either a measurement is uncalibrated or an error
message has occurred,

2. Initiate a sweep and wait for the SRQ interrupt,
3. Poll all instruments and report the nature of the * interrupt on the spectrum analyzer.

The STATus subsystem of commands is used to monitor and query hardware status. These hardware
registers monitor various events and conditions in the instrument. Details about the use of these
commands and registers can be found in the manual/help in the Utility Functions section on the
STATus subsystem.

File name: _SRQ.C

• Relative Band Power Markers using C++

This example demonstrates how to set markers as Band Power Markers and obtain their band power
relative to another specified marker.

File name: _BPM.c

• Trace Detector/Couple Markers using C++

This example demonstrates how to:

1. Set different types of traces (max hold, clear and write, min hold)
2. Set markers to specified traces
3. Couple markers

Note: The Spectrum Analyzer is capable of multiple simultaneous detectors (i.e. peak detector for
max hold, sample for clear and write, and negative peak for min hold).

File name: _tracecouple.c
 101

Programming Examples
X-Series Spectrum Analyzer Mode Programing Examples
• Phase Noise using C++

This example demonstrates how to:

1. Remove instrument noise from the phase noise
2. Calculate the power difference between 2 traces

File name: _phasenoise.c

Programming using Agilent VEE Pro:

• Transfer Screen Images from my Spectrum Analyzer using Agilent VEE Pro

This example program stores the current screen image on the instrument flash memory as
“D:\scr.png”. It then transfers the image over GPIB and stores the image on your PC in the
desired directory as “capture.gif”. The file “D:\scr.png” is then deleted on the instrument
flash memory.

File name: _ScreenCapture.vee

• Transfer Trace Data data transfer using Agilent VEE Pro

This example program transfers the trace data from your Spectrum Analyzer. The program queries
the IDN string from the instrument and supports Integer 32, real 32, real 64 and ASCII data. The
program returns 1001 trace points for the signal analyzer.

File name: transfertrace.vee
 102

Programming Examples
89601X VXA Signal Analyzer Programming Examples
89601X VXA Signal Analyzer Programming Examples
The following examples work with 89601X VXA Signal Analyzer Mode. These examples use one of the
following programming languages: Visual Basic® 6, Visual Studio 2003 .NET®, and Agilent VEE Pro.

These examples are available in either the “progexamples” directory on the Agilent Technologies
89601X VXA documentation CD-ROM or the “progexamples” directory in the analyzer. The file
names for each example is listed at the end of the example description. The examples can also be found
on the Agilent Technologies, Inc. web site at URL:

 http://www.agilent.com/find/sa_programming

NOTE These examples have all been tested and validated as functional in 89601X VXA
Signal Analyzer Mode.

Programming using Visual Basic® 6 and Visual Basic.NET®:

• Setting up a Vector Measurement on your 89601X VXA using Visual Basic 6.

This example program:

— Sets up the VSA Mode.

— Sets the Vector Measurement.

— Configures the Vector Measurement.

— Starts the Vector Measurement.

— Reads the trace data in Real 64 data format

File name: VXA-MeasDemo.vbs

• Setting up a Digital Demod Measurement on your 89601x VXA using Visual Basic 6.

This example program:

— Sets up the VSA Mode.

— Sets the Digital Demod Measurement.

— Configures the Digital Demod Measurement.

— Starts the Digital Measurement.

— Reads the trace data, EVM, and demodulated bits.

File name: VXA-DigDemodDemo.vbs
 103

http://www.agilent.com/find/sa_programming

Programming Examples
89601X VXA Signal Analyzer Programming Examples
Programming using Agilent VEE Pro:

• Setting up a VSA Measurement on your 89601X VXA using VEE.

This example program:

— Sets up the VSA Mode.

— Sets the Vector Measurement.

— Configures the Vector Measurement.

— Starts the Vector Measurement.

— Reads the trace data in Real 32, Real 64 and ASCII data format

File name: VXA-MeasDemo.vee

• Setting up a Digital Demod Measurement on your 89601X VXA VEE.

This example program:

— Sets up the VSA Mode.

— Sets the Digital Demod Measurement.

— Configures the Digital Demod Measurement.

— Starts the Digital Measurement.

— Reads the trace data, EVM, and demodulated bits.

File name: VXA-DigDemodDemo.vee

Programming using Visual Studio® 2003 .NET:

• Setting up a VSA Measurement on your 89601X VXA using Visual Basic 6.

This example program:

— Sets up the VSA Mode.

— Sets the Vector Measurement.

— Configures the Vector Measurement.

— Starts the Vector Measurement.

— Reads the trace data in Real 64 data format

File name: VXA-MeasDemo.sln
 104

Programming Examples
89601X VXA Signal Analyzer Programming Examples
• Setting up a Digital Demod Measurement on your 89601X VXA using Visual Basic 6.

This example program:

— Sets up the VSA Mode.

— Sets the Digital Demod Measurement.

— Configures the Digital Demod Measurement.

— Starts the Digital Measurement.

— Reads the trace data, EVM, and demodulated bits.

File name: VXA-DigDemodDemo.sln
 105

	X-Series Programmer’s Guide
	Table of Contents
	1 Introduction to Programming X-Series Applications
	What Programming Information is Available?
	Using Embedded Help for Programming
	Using the Help System on Your PC
	Help System Features Especially Useful for Programmers

	Communicating SCPI Using Telnet
	Overview of the GPIB
	GPIB Command Statements

	SCPI Measurement Commands
	Measurement Group of Commands
	Common Measurement Commands

	STATus Subsystem (No equivalent front-panel keys)
	Detailed Description
	STATus Subsystem Command Descriptions

	2 Programming Fundamentals
	SCPI Language Basics
	Command Keywords and Syntax
	Creating Valid Commands
	Special Characters in Commands
	Parameters in Commands
	Putting Multiple Commands on the Same Line

	Improving Measurement Speed
	Turn off the display updates
	Use binary data format instead of ASCII
	Minimize the number of GPIB transactions
	Consider using USB or LAN instead of GPIB
	Minimize DUT/instrument setup changes
	Avoid unnecessary use of *RST
	Avoid automatic attenuator setting
	Avoid using RFBurst trigger for single burst signals
	N9071A: Optimize your GSM output RF spectrum switching measurement
	Making power measurements on multiple bursts or slots? Use CALCulate:DATA<n>:COMPress?
	For More Information

	Programming in C Using the VTL
	Typical Example Program Contents
	Linking to VTL Libraries
	Compiling and Linking a VTL Program
	Example Program
	Including the VISA Declarations File
	Opening a Session
	Device Sessions
	Addressing a Session
	Closing a Session

	For More Information

	3 Programming Examples
	X-Series Spectrum Analyzer Mode Programing Examples
	89601X VXA Signal Analyzer Programming Examples

